Eichinger, Roland and Jöckel, Patrick and Lossow, Stefan (2015) Simulation of the isotopic composition of stratospheric water vapour - Part 2: Investigation of HDO/H2O variations. Atmospheric Chemistry and Physics, 15 (12), pp. 7003-7015. Copernicus Publications. doi: [10.5194/acp-15-7003-2015]. ISSN 1680-7316.
![]() |
PDF
5MB |
Official URL: http://www.atmos-chem-phys.net/15/7003/2015/
Abstract
Studying the isotopic composition of water vapour in the lower stratosphere can reveal the driving mechanisms of changes in the stratospheric water vapour budget and therefore help to explain the trends and variations of stratospheric water vapour during recent decades. We equipped a global chemistry climate model with a description of the water isotopologue HDO, comprising its physical and chemical fractionation effects throughout the hydrological cycle. We use this model to improve our understanding of the processes which determine the patterns in the stratospheric water isotope composition and in the water vapour budget itself. The link between the water vapour budget and its isotopic composition in the tropical stratosphere is presented through their correlation in a simulated 21-year time series. The two quantities depend on the same processes; however, they are influenced with different strengths. A sensitivity experiment shows that fractionation effects during the oxidation of methane have a damping effect on the stratospheric tape recorder signal in the water isotope ratio. Moreover, the chemically produced high water isotope ratios overshadow the tape recorder in the upper stratosphere. Investigating the origin of the boreal-summer signal of isotopically enriched water vapour reveals that in-mixing of old stratospheric air from the extratropics and the intrusion of tropospheric water vapour into the stratosphere complement each other in order to create the stratospheric isotope ratio tape recorder signal. For this, the effect of ice lofting in monsoon systems is shown to play a crucial role. Furthermore, we describe a possible pathway of isotopically enriched water vapour through the tropopause into the tropical stratosphere.
Item URL in elib: | https://elib.dlr.de/96963/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||
Title: | Simulation of the isotopic composition of stratospheric water vapour - Part 2: Investigation of HDO/H2O variations | ||||||||||||
Authors: |
| ||||||||||||
Date: | 2015 | ||||||||||||
Journal or Publication Title: | Atmospheric Chemistry and Physics | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | Yes | ||||||||||||
Gold Open Access: | Yes | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | Yes | ||||||||||||
Volume: | 15 | ||||||||||||
DOI: | [10.5194/acp-15-7003-2015] | ||||||||||||
Page Range: | pp. 7003-7015 | ||||||||||||
Publisher: | Copernicus Publications | ||||||||||||
ISSN: | 1680-7316 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | stratospheric water vapour, Modular Earth Submodel System, MESSy, EMAC, water isotopologues, tape recorder effect, chemistry-climate model, satellite observations | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||
DLR - Research theme (Project): | R - Atmospheric and climate research | ||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||
Institutes and Institutions: | Institute of Atmospheric Physics > Earth System Modelling | ||||||||||||
Deposited By: | Jöckel, Dr. Patrick | ||||||||||||
Deposited On: | 09 Jul 2015 13:08 | ||||||||||||
Last Modified: | 02 May 2019 14:04 |
Repository Staff Only: item control page