Geiß, Christian and Aravena Pelizari, Patrick and Marconcini, Mattia and Sengara, Wayan and Edwards, Mark and Lakes, Tobia and Taubenböck, Hannes (2015) Estimation of seismic building structural types using multi-sensor remote sensing and machine learning techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 104, pp. 175-188. Elsevier. ISSN 0924-2716.
![]() |
PDF
- Preprint version (submitted draft)
20MB |
Official URL: http://www.sciencedirect.com/science/article/pii/S0924271614002007
Abstract
Detailed information about seismic building structural types (SBSTs) is crucial for accurate earthquake vulnerability and risk modeling as it reflects the main load-bearing structures of buildings and, thus, the behavior under seismic load. However, for numerous urban areas in earthquake prone regions this information is mostly outdated, unavailable, or simply not existent. To this purpose, we present an effective approach to estimate SBSTs by combining scarce in situ observations, multi-sensor remote sensing data and machine learning techniques. In particular, an approach is introduced, which deploys a sequential procedure comprising five main steps, namely calculation of features from remote sensing data, feature selection, outlier detection, generation of synthetic samples, and supervised classification under consideration of both Support Vector Machines and Random Forests. Experimental results obtained for a representative study area, including large parts of the city of Padang (Indonesia), assess the capabilities of the presented approach and confirm its great potential for a reliable area-wide estimation of SBSTs and an effective earthquake loss modeling based on remote sensing, which should be further explored in future research activities.
Item URL in elib: | https://elib.dlr.de/96094/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Estimation of seismic building structural types using multi-sensor remote sensing and machine learning techniques | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | June 2015 | ||||||||||||||||||||||||
Journal or Publication Title: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 104 | ||||||||||||||||||||||||
Page Range: | pp. 175-188 | ||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Seismic building structural types Very high and medium resolution imagery Machine learning SVM Random Forests Earthquake loss estimation | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Zivile Kriseninformation und Georisiken (old), R - Vorhaben Fernerkundung der Landoberfläche (old) | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security German Remote Sensing Data Center > Land Surface | ||||||||||||||||||||||||
Deposited By: | Geiß, Christian | ||||||||||||||||||||||||
Deposited On: | 03 Jun 2015 08:59 | ||||||||||||||||||||||||
Last Modified: | 03 Jun 2020 10:53 |
Repository Staff Only: item control page