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Abstract  

Detailed information about seismic building structural types (SBSTs) is crucial for 

accurate earthquake vulnerability and risk modeling as it reflects the main load-bearing 

structures of buildings and, thus, the behavior under seismic load. However, for 

numerous urban areas in earthquake prone regions this information is mostly outdated, 

unavailable, or simply not existent. To this purpose, we present an effective approach to 

estimate SBSTs by combining scarce in situ observations, multi-sensor remote sensing 

data and machine learning techniques. In particular, an approach is introduced, which 

deploys a sequential procedure comprising five main steps, namely calculation of 

features from remote sensing data, feature selection, outlier detection, generation of 

synthetic samples, and supervised classification under consideration of both Support 

Vector Machines and Random Forests. Experimental results obtained for a 

representative study area, including large parts of the city of Padang (Indonesia), assess 

the capabilities of the presented approach and confirm its great potential for a reliable 

area-wide estimation of SBSTs and an effective earthquake loss modeling based on 

remote sensing, which should be further explored in future research activities.  
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1. Introduction 

Increasing spatial concentration of exposed elements such as people, buildings, infrastructure 

or economic values in earthquake prone regions induce seismic risk at an unprecedented high 

level. In particular, urban areas in developing countries are characterized by a large amount of 

vulnerable buildings. At the same time, a very dynamic urban growth is accompanied by the 

construction of unplanned, spontaneous and highly vulnerable settlements. Thus, local 

governments and stakeholders face the problem of continuously updating their knowledge on 

the current building stock and simultaneously assessing exposed buildings area-wide to 

efficiently establish and adjust preparedness measures (Sarabandi and Kiremidjian, 2007, 

Taubenböck et al., 2009a, Wieland et al., 2012). Especially for earthquake loss estimation 

(ELE) modeling, the gathering of building inventory and vulnerability information represents 

normally the most time-consuming and expensive aspect (Dunbar et al., 2003). 

The exclusive application of conventional approaches such as detailed in situ building-by-

building analysis by structural engineers is decreasingly able to cope with this situation. 

Instead, in the last few years remote sensing has proven its great potential to extract relevant 

features for pre-event vulnerability analysis of built-up structures for large areas (Geiß and 

Taubenböck, 2012). So far, different approaches have been presented in the literature. By 

means of characteristics extracted from remote sensing data, Taubenböck et al. (2009a) and 

Borzi et al. (2011) reconstruct and characterize the built environment and retrieve specific 

fragility functions for designated building types. Pittore and Wieland (2012) use remote 

sensing data for delineating and characterizing homogeneous built-up areas. The vulnerability 

of the building inventory is determined in combination with information from a ground-based 

omnidirectional imaging system. Similarly, Borfecchia et al. (2009) assess the vulnerability of 

buildings in a hybrid way, namely by combining in situ ground truth for selected buildings 

with information derived from remote sensing data. Supervised classification techniques are 

subsequently used to classify the residual building inventory. Geiß et al. (2013) combine 

detailed in situ seismic vulnerability information with features describing the urban 

morphology derived from remote sensing data. Supervised regression and classification 

techniques are then applied to evaluate the suitability for an area-wide assessment. The 

aforementioned studies deploy very heterogeneous approaches with respect to the 

vulnerability levels or classes to be estimated. Taubenböck et al. (2009a), Borzi et al. (2011), 

and Borfecchia et al. (2009) use rather specific definitions, whereas Pittore and Wieland 

(2012) and Geiß et al. (2013) incorporate also more transferable, yet generalized, assessment 

schemes, such as the European Macroseismic Scale (EMS-98; Grünthal et al. 1998). 

However, none of the cited studies focus on the estimation of seismic building structural types 

(SBSTs). SBSTs characterize the main load-bearing structure of a building. This is the most 

affecting factor for earthquake damage and, accordingly, it is generally the first property 

considered for categorizing a building. Further frequently considered parameters that may 

reflect the seismic performance also comprise the number of storeys, the period of 

construction or the presence of structural irregularities (Coburn and Spence, 2002). A function 

for individual SBSTs can be determined that relates the magnitude of the seismic hazard to 

the damage probability of the structures (Calvi et al., 2006). This enables the prediction of the 
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probable damage distribution of the building inventory with respect to a certain level of 

seismic hazard (Douglas, 2007). Additionally, SBSTs can also contribute to the assessment of 

the seismic vulnerability according to schemes such as the EMS-98.  

In the pioneering work of Sarabandi and Kiremidjian (2007), information derived from 

remote sensing data is combined with ancillary (geo-)information to estimate SBSTs. In 

particular, they use very high resolution optical imagery to derive the building inventory and 

calculate features describing the height, extent, shape, and roof type characteristics of 

individual buildings. In addition, they use tax assessor data to compile information about 

occupancy and age. Subsequent to that, supervised classification techniques (Classification 

and Regression Trees (CART) and multinomial logistic regression) are deployed to estimate 

SBSTs. In this paper we propose considerable conceptual and methodological differences to 

estimate SBSTs. The plethora of sensors systems that provide useful and complementary 

information yields the possibility to substitute ancillary (geo-)information and, thus, fully rely 

on remote sensing to reconstruct and characterize the building inventory. Due to e.g. data 

availability it may be crucial to gain independence from proprietary sources of information 

(e.g. tax assessor data). In addition, a complementary set of remote sensing data allows to 

characterize the building inventory in an exhaustive manner and to encode for instance also 

spatial context information in the classifier. This in turn opens a good opportunity to boost 

predictive performance of learned models. An exhaustive characterization of the building 

inventory based on a comprehensive set of features simultaneously suggests relying on 

classification approaches that are able to cope efficiently with high-dimensional data sets. 

Moreover, SBSTs ground truth is very costly to obtain and at the same time is afflicted with 

uncertainties induced by an often challenging assignment process. This induces the general 

need for a more tailored approach, which is able to lower those uncertainties and can cope 

with the scarcity of in situ elaborated ground truth.   

To address these considerations, the objective of this paper is to introduce an approach for 

estimating SBSTs area-wide based on scarce in situ ground truth and complementary multi-

sensor remote sensing data by means of a sequential procedure of advanced machine learning 

techniques. More specifically, we exploit very high resolution multispectral imagery, multi-

temporal medium resolution multispectral data, as well as height information from a 

normalized digital surface model (nDSM) to derive a comprehensive set of features 

characterizing the urban environment. Different feature selection techniques are then 

employed to reduce the dimensionality of the resulting dataset and identify the most relevant 

features. Outlier detection is applied to prune those objects from the data for which the 

available in situ information cannot be considered reliable. To tackle the scarcity of SBSTs 

ground-truth data, additional synthetic samples are generated. Finally, different SBSTs are 

estimated by means of advanced supervised classification techniques. In particular, both 

Support Vector Machines (SVM) (Vapnik, 1998, Schölkopf and Smola, 2002) and Random 

Forests (RF) (Breiman, 2001) are considered due to their capability of effectively handling 

complex remote sensing classification problems (Camps-Valls and Bruzzone, 2009, Gislason, 

2006). Since spatially distributed estimation of SBSTs represents a critical input for ELE 

models, we illustrate the applicability of the presented approach within scenario-based loss 

estimations for the city of Padang, Indonesia.  
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The remainder of the paper is organized as follows. Section 2 characterizes the study site and 

data base for this study. In Section 3 the methods are described and results and discussions are 

revealed in Section 4.  The paper is concluded and an outlook is given in Section 5.  

2. Study Site and Data 

2.1. Study Site: Padang, Indonesia 

The presented study focuses on the city of Padang (Indonesia), which is situated in one of the 

most earthquake-prone regions worldwide. Padang is located on the island of Sumatra (mainly 

on the coast and to some extent sited beneath the mean sea level) and is the capital city of the 

Sumatera Barat province. It represents the third largest city on the island with approximately 

one million inhabitants. The dynamic urban system of Padang is constituted by a high 

concentration of population, infrastructure and economic values. The city has supra-regional 

relevance with an international airport and railway connection and possesses an essential 

economical role for the coastal region and the mountainous hinterland. 

The Sumatra subduction zone represents one of the most active plate tectonic margins in the 

world (Petersen et al., 2004). The Australian plate plunges beneath the Sunda block of the 

Eurasian plate with convergence rates between ~56 and 62 mm/yr. (Chlieh et al., 2008) 

(Fig.1a). The associated complex plate boundary setting leads to thrust earthquakes on the 

subduction fault, strike-slip earthquakes on the Sumatran fault, deeper earthquakes within the 

subducting lithosphere, and volcanic earthquakes (McCaffrey, 2009). Accordingly, the city is 

located in a region characterized by extremely high probability of severe earthquakes, as well 

as secondary effects such as tsunamis (Chlieh et al., 2008, Taubenböck et al., 2009b). As an 

example, in the afternoon of 30th September 2009, Padang was hit by an earthquake with a 

moment magnitude of Mw = 7.6 (Taubenböck et al., 2013). Overall, the earthquake event 

affected an area with a population of 1.2 million and caused 1,195 fatalities. 144,000 

buildings collapsed or were significantly damaged. In Padang, 383 people died and 431 were 

seriously injured, primarily due to collapsing buildings (EERI, 2009, BNPB, 2009). Despite 

the size of the event, the Sunda megathrust was not ruptured and the stress on the Mentawai 

segment, which was accumulated over 200 years, has not been significantly reduced. The 

megathrust strain-energy budget remained substantially at a high level and the threat of a 

great, also tsunamigenic earthquake with a magnitude Mw>8.5 on the Mentawai patch is 

unabated (McCloskey et al., 2010). 
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et al., 2004). The DTM was derived based on measurements of the bare ground contained in 

the original radar data and by manually reviewing and editing (Intermap, 2010). The data sets 

have a geometric resolution of 5 m and a height Root-mean-square-error (RMSE) of 1 m. To 

get relative height information of elevated objects a nDSM is calculated by subtracting the 

height values of the DTM from the height values of the DSM (Fig.1d). Interested readers can 

refer to Taubenböck et al. (2009b) for a more detailed description of data acquisition and 

preprocessing.  

2.3 Derived Geoinformation and In Situ Data  

Basic geoinformation had already been derived from the remote sensing data and provided for 

this study. Within the “Last-Mile” project 87,573 building footprints were digitized from the 

IKONOS imagery by means of a manual photointerpretation procedure. They represent the 

core of Padang’s building inventory. Additionally, building blocks had been derived from a 

closed-meshed road network (Taubenböck et al., 2008) (Fig. 1e). Both information layers 

serve as basis for the calculation of features, which is explained in Section 3.1. 

About four weeks after the earthquake on 30th September 2009 a field survey in the affected 

region took place in the framework of the Australia-Indonesia Facility for Disaster Reduction 

(AIFDR) jointly led by the Institut Teknologi Bandung (ITB) and Geoscience Australia. The 

primary objective of the survey was to undertake a population based inspection of buildings 

of all types and all damage levels. The results allowed inferring knowledge regarding the 

vulnerability of a range of building types present in the surveyed region and representative for 

others in Indonesia (Sengara et al., 2010). Overall, 3896 buildings were surveyed and each of 

them was assigned to a specific structural system, wall type, roofing type, floor type, number 

of storeys, usage, and the degree of damage suffered from the earthquake event. To conduct a 

vulnerability assessment and to derive fragility curves, the surveyed buildings were 

categorized according to SBSTs, which reflect a similar behavior under seismic load. In 

particular, the following classes were considered: “Confined masonry” (CM), “Reinforced 

concrete high” (RC high), “Reinforced concrete low” (RC low), “Steel frame” (SF), “Timber 

frame residential” (TF res), “Timber frame non-residential” (TF non-res), and “Unreinforced 

masonry” (URM) (Fig. 1f). From the whole amount of surveyed buildings, 2779 are located in 

the study area. The position of each building was recorded with a GPS device (Fig. 1b) and 

digital pictures were also taken (ibid.). Nevertheless, due to inaccuracies in the GPS 

positioning, only 561 buildings could be unambiguously assigned to their corresponding 

building footprint extracted from remote sensing imagery (Fig. 1e). Unfortunately, only two 

samples remained for the structural type SF. As this class represents a relatively rare but 

striking SBST, the corresponding in situ ground truth was extended with 12 additional 

samples derived from another data set compiled in February/March 2008 during the “Last-

Mile” project (Taubenböck et al., 2009b). The histogram depicting frequencies of different 

SBSTs of the final in situ data set is shown in Figure 2. Descriptive statistical analyses were 

carried out to check whether the final in situ data set is consistent with all surveyed buildings 

and the results revealed a very good agreement. 
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Fig. 2. Frequency of labeled samples (overall: 573) according to different SBSTs of the final 
in situ data set 

 

3. Methods  

Based on the remote sensing and in situ data, we carry out a sequential procedure to estimate 

SBSTs. Figure 3 gives a schematic overview from the data sets used, the chronology of the 

procedure to the targeted SBSTs classification map. A set of features is derived from the 

remote sensing data at two different spatial levels, building and block level (Section 3.1). The 

hierarchical supervised classification approach is described in Section 3.2. Outliers in the in 

situ data and building inventory are identified first. Therefore, a subset based feature selection 

technique (Section 3.2.1) is used to create a suitable group of features for building robust one-

class classification models based on the in situ data. The models are built by means of a one-

class support vector machine (OC-SVM, Section 3.2.2) approach and are applied on both in 

situ data and building inventory. Subsequent to outlier identification, multiclass classification 

models are built in three consecutive steps. The remaining in situ samples are used to identify 

useful groups of features for building robust models by applying subset and ranker based 

feature selection techniques (Section 3.2.1). To tackle scarcity of the in situ data and learn 

efficient discriminative classifiers, synthetic training samples are generated by means of an 

oversampling technique (Section 3.2.3). Based on the generated feature groups and 

oversampled training data, multiclass classification models are learned by using SVM and RF 

(Section 3.2.4). Finally, the most accurate model is applied on the building inventory to 

estimate SBSTs spatially distributed.  
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addition, statistical values of 1st and 2nd order were extracted from the available IKONOS 

imagery at building and block level. The first serve as a descriptor of roof surface material 

and arrangement whereas the latter are intended to describe the composition of distinct urban 

structures. Mean and standard deviation values of the different image bands as well as band 

ratios, which are intended to emphasize spectral dissimilarities, were calculated. Additionally, 

rotation-invariant texture measures for the panchromatic and near-infrared band were 

computed using both the co-occurrence matrix (GLCM) and grey level difference vector 

(GLDV). Features explicitly aiming to describe the spatial context are calculated at block 

level and consist of the area of building blocks and the average size of the buildings located 

within. Furthermore, spatial metrics such as proportion measures of land cover classes are 

computed. Based on a urban land cover map derived in Taubenböck et al. (2009b) (which 

exhibited an OA of 97%), proportions of land cover classes “buildings”, “sealed”, 

“grass/meadow”, “trees”, and “impervious surface”, which represents a combination of 

“buildings” and “sealed” were calculated per block. Additionally, a semantic classification 

(“Structure Type S”), which is built on physical features that describe the urban morphology, 

is incorporated. The classification describes the socio-economic status of the population by 

distinguishing “slums”, “suburbs”, “low income areas”, “medium income areas”, and “high 

income areas”. Beyond, the incorporation of height information allows the calculation of 3D 

features such as building floor number, floor space, ratio of diameter and height, ratio of 

width and height, as well the average building height within a building block. The mean slope 

for each building block was calculated to describe topographic location characteristics. By 

analyzing two Landsat images from 1989 and 2000, the period of construction is 

approximately described based on a post classification change detection procedure, which 

aims to map the urban extent at the respective time step. For a more comprehensive 

description of all the features listed in Fig. 4a, the reader is referred to Geiß et al. (2013). 

In addition, we introduce a number of new features in this study (Fig. 4b). They characterize 

the buildings’ two-dimensional extent, shape and spatial context. They were chosen since they 

turned out to be beneficial in previous studies for discriminating different morphologically 

homogeneous urban structures based on geospatial data (Steiniger et al., 2008, Colaninno et 

al., 2011). Overall, each building object is represented by a 145-dimensional feature vector, 

whereby 79 features are calculated based on the individual building footprints, and 66 are 

calculated based on the building blocks. In this manner, a perceptual coherence (Steiniger et 

al., 2008) of physical appearance, spatial composition and context, and temporal development 

of the urban morphology and the main load-bearing structure of buildings is assumed.  
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of features as it is the case in this study. Thereby, high-dimensional feature vectors often 

exhibit redundancy, show inter-correlations and may suffer from the “Hughes phenomenon" 

(which states that for a limited amount of samples the predictive power decreases as the 

dimensionality of the feature vector increases (Hughes, 1968)). Furthermore, multivariate 

classification methods can be prone to over-fitting. Filtering out the least promising features 

and thus reducing the dimensionality of the feature vector may attenuate the aforementioned 

problems (Guyon, 2003). 

Feature selection techniques can be categorized into filters and wrappers. That latter evaluate 

features by using accuracy estimates provided by the actual classification algorithm, which is 

deployed subsequent to feature selection. Thus, the classifier needs to be trained and accuracy 

estimation needs to be performed for each iteration of the evaluation process. This can lead to 

large processing times what make them unpractical for extensive studies on high-dimensional 

data sets (Kohavi and John, 1997). Accordingly, in our study we employed filter methods for 

feature selection, as they operate independently with respect to the classifier. Among filter 

methods one can discriminate algorithms which evaluate individual features and those which 

assess subsets of features (Hall and Holmes, 2003). Overall, six different filter methods were 

applied in the context of the presented work (by means of the WEKA software environment 

(Hall et al., 2009)), namely Information Gain (IG), Gain Ratio (GR), Chi-Squared (χ2), 

Pearson product-moment correlation coefficient (COR), and Relief-F (RelF), which all allow 

feature ranking, as well as the Correlation-based Feature Selection (CFS) which allows 

evaluating feature groups. 

IG belongs to the group of information theory indices, which evaluates a feature by means of 

the Shannon entropy. The decrease in entropy of a class is evaluated when a feature is 

considered (Duch, 2006). A drawback of the IG measure is that it tends to be biased towards 

features with a large number of distinct values. GR, which is a largely-employed modification 

of IG, aims to avoid this bias by a simple normalization utilizing the class entropy (Van 

Hulse, 2009). The χ2 method deploys the χ2 statistic to evaluate the strength of the relationship 

between each independent feature and a class (ibid.). COR measures the relation of a feature 

and a class based on Pearson’s Correlation coefficient (Hall et al., 2009) and was used as a 

benchmark in this study. Focusing on the expectation that useful features should differentiate 

between instances from different classes and have similar values for instances from the same 

class, RelF (Kononenko, 1994, Robnik-Šikonja and Kononenko, 2003) ranks features 

according to their ability to discriminate between neighboring instances. For multiclass 

problems RelF randomly samples an instance from the data and locates its k nearest neighbors 

from the same and different classes. The feature values of the nearest neighbors are compared 

to the sampled instance and used to up-date relevance scores for each feature. This procedure 

is repeated for a number of instances m that has to be specified by the user (Hall and Holmes, 

2003). The CFS method (Hall, 1999) uses a best first search algorithm to identify a group of 

possibly suitable subsets. Each considered subset is subsequently merited by means of an 

entropy based heuristic. Subsets with high feature-class correlation and low feature-feature 

inter-correlation are merited best (Hall and Holmes, 2003). IG, GR, χ2, and COR are bivariate 

procedures. Each feature is evaluated independently of all other features in the data set. This 

is in contrast to the procedure of the RelF and CFS approach.  
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For feature selection methods that require discrete values (i.e. IG, GR, χ2), numerical features 

were discretized according to the method of Fayyad and Irani (1993). Concerning the RelF 

approach, we set m to the number of all instances, since a larger value of m implies a more 

reliable approximation (Kononenko, 1994). We tested several values for the number of 

nearest neighbors to be considered. However, the results are hardly sensitive with respect to 

this parameter in this study, thus the number of neighbors k was set to 10. For the CFS 

method we used a stopping criterion for the search heuristic of 5 consecutive fully expanded 

non-improving subsets. The subset with the highest merit revealed during the search was 

selected. The results of the feature selection algorithms served for the creation of feature 

subsets that were used for building several multiclass classification models (Section 3.2.4). 14 

subsets containing the n “best ranked” features (n = 5, 10, …, 50, 60, 80, 100, 120) were 

created based on the results of each ranker method. In addition, one feature subset was built 

according to the result from the CFS technique (n = 28). Altogether this leads to a total 

amount of 72 data sets, one containing the original number of features and 71 represent 

feature reduced subsets.   

3.2.2 Outlier Detection with OC-SVM 

Outlier detection is applied to exclude objects from the data for which the available in situ 

information cannot be considered reliable. The appearance of outliers can be related to several 

sources. The set of in situ samples may not be fully representative for all buildings in the area 

and the SBSTs, as defined in the context of the in situ survey, may not cover all structures. 

Inaccuracies may have been occurred in the surveying of single buildings, leading to the 

assignment of inappropriate labels. Mislabeling also cannot be excluded in the assignment 

process of the in situ data. Beyond, feature values of building objects can be biased due to 

errors or noise in the underlying remote sensing data.  

To lower those uncertainties we employ ν-OC-SVM, which were introduced by Schölkopf et 

al. (1999) as support vector method for novelty detection. It is based on the general principle 

of SVM, which determine appropriate parameters that construct a decision surface, the 

optimal separating hyperplane, between the classes of training samples with respect to their 

position in an n-dimensional feature space (Vapnik, 1995, 1998). With the benefits of SVM, 

the one class classifier is able to capture the support region (i.e., where the density is large) 

without the need of prior assumptions about the distribution of the data. Therefore, the target 

class is described by a function that maps the majority of instances to a region where the 

function is nonzero. To achieve this, the origin of the feature space is first treated as the only 

available member of the non-target class (i.e., as an outlier). Then, a hyperplane with 

maximum margin separation from the origin is identified. Analogous to the usual SVM 

framework, outliers in the training data are handled by slack variables (Muñoz-Marí et al., 

2010).  

To keep computational costs low and mitigate over-fitting, we identified a group of valuable 

features for the one-class models by using the CFS technique (Section 3.2.1). The in situ data 

with the reduced set of features were split according to the SBSTs class labels. Subsequently, 

for each of them we determine a specific ν-OC-SVM model (all support vector methods in 
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this paper were carried out with the LibSVM package by Chang and Lin (2001)). We used 

Gaussian radial basis function (RBF) kernels as commonly used in literature when addressing 

environmental applications since they showed generally good performances in plenty of 

studies (e.g. Camps-Valls and Bruzzone, 2009, Volpi et al., 2013). The application of the ν-

OC-SVM approach with a RBF kernel requires adjusting the parameter ν, which represents 

the expected percentage of outliers in the training set and the kernel-width parameter γ. 

However, it is difficult to tune free parameters if only target labeled samples are available in 

the training data. In such situations solely the true positive rate (sensivity) can be calculated, 

whereas the error counterpart (specificity) cannot. To overcome this limitation, the free 

parameter selection was determined by evaluating arg maxθ �
OA[%]

#SV
�, where θ is the set of free 

parameters (i.e., ν and γ), OA is the overall accuracy and #SV the number of support vectors. 

This heuristic enforces high OA while simultaneously limiting model complexity keeping a 

low number of SV (Muñoz-Marí et al., 2010). For both ν and γ we performed a grid search 

varying ν in the range {0.01, …, 0.1} in 0.01 steps and γ in the range {10-2, …, 102} in power 

of √10 steps, respectively. OA for each model was estimated by a 4-fold cross-validation 

strategy. Table 1 shows the determined hyper-parameter combinations for the respective 

SBSTs with number of SV, OA estimates and corresponding values of the evaluation 

heuristic.  

SBSTs ν γ #SV OA[%] OA[%]/#SV 
CM 0.01 0.01 8 96.31 12.04 
RC low 0.01 0.01 5 95.74 19.15 
RC high 0.01 0.02 5 66.67 13.33 
URM 0.01 0.02 5 84.85 16.97 
TF res 0.01 0.07 6 77.42 12.90 
TF non-res 0.01 0.01 3 53.33 17.78 
SF 0.01 0.01 5 50.00 10.00 

Table 1. Determined hyper-parameters (i.e., ν, γ) for the respective SBSTs with affiliated 
number of SV (#SV), OA estimates (OA [%]) and corresponding values of the evaluation 
heuristic (OA[%]/#SV). 

 

A ν-OC-SVM model was trained for each SBST based on the identified hyper-parameter 

combination and applied to the building inventory.  Building objects that were not identified 

as class members were removed from the in situ data. Analogous, instances from the building 

inventory that were not assigned to one of the 7 SBST classes were removed (Fig. 3). 

3.2.3 Oversampling for Handling Scarce Imbalanced Data Sets 

To tackle scarcity of the in situ data and address problems associated with class imbalance, 

we oversampled the training data. As can be seen in Fig. 2, the in situ data for the investigated 

classes exhibit an uneven distribution and for some of them only a very small number of 

samples is available. If a class is characterized by a small number of samples, it is difficult to 

uncover regularities and thus construct accurate decision boundaries. In addition, the 

classifiers are bias-prone and tend to favor the majority classes (Nguyen et al., 2009).  
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Accordingly, we employed the SMOTE approach (Synthetic Minority Over-sampling 

Technique, Chawla et al., 2002), which generates new samples by interpolating between 

existing instances rather than simply duplicating original samples to avoid over-fitting. 

Thereby, the k nearest neighbors of a minority sample within the affiliated minority class are 

first identified. Depending on the amount of over-sampling required, some of the nearest 

neighbors are randomly selected and synthetic samples are generated along the line between 

the minority example and its selected nearest neighbors in the feature space (He and Garcia, 

2009). It has been shown that the error rate caused by class imbalance decreases when the size 

of the training data increases (Japkowicz and Stephen, 2002). For this reason, we choose to 

keep the influence of synthetic samples as low as possible and at the same time equal for each 

class. Thus, we oversampled in situ ground-truth data for all considered classes by 500%, by 

keeping the a priori distribution of the classes. It is ensured that every class consists of at least 

60 instances and the classification models deployed later on are not biased due to an alteration 

of the class distribution. According to the recommendations of Chawla et al. (2002) the 

number of nearest neighbors to be considered was set to 5.  

3.2.4 Multiclass Classification with SVM and RF 

For the actual estimation of SBSTs, we deploy SVM and RF since both algorithms showed 

excellent performances in previous studies, especially when high-dimensional data sets are 

considered. Contrarily to the OC-SVM approach described in Section 3.2.2, the multiclass 

SVM approach aims to discriminate two or more target classes from each other. To cope with 

class overlap or the existence of noise in the training data, soft margin SVM were introduced 

(referred to as C-SVM). This technique represents a modification of the maximum margin 

approach using relaxed separation constrains that allow for the possibility of instances on the 

incorrect side of the respective margin boundary (Cortes and Vapnik, 1995).   

The designated description of SVM refers to binary classification. To extend it to 

classification problems involving more than two classes normally a parallel architecture made 

of an ensemble of binary classifiers is utilized (Hsu and Lin, 2002, Melgani and Bruzzone, 

2004). Following this way, one can discriminate one-against-the-rest or one-against-one 

methods. We chose the latter, because this technique allows producing equal or better 

performances, while featuring a favorable trade-off between accuracy, computational costs 

and algorithm complexity (Hsu and Lin, 2002). As for the OC-SVM approach, also here we 

used RBF kernels. Learning the most appropriate C-SVM in conjunction with a RBF kernel 

requires the definition of the cost-parameter C (which controls the trade-off between the 

maximization of the margin and minimization of the classification error) and the kernel-width 

parameter γ. Tuning of C and γ was addressed by a grid search strategy based on 10-fold cross 

validation. Generalization accuracy is evaluated in terms of estimated kappa statistic κ (which 

allows considering both omission and commission errors; Foody, 2004) on the average of 5 

independent trials. In conformity with the recommendations of Hsu et al. (2010), a coarse 

grid-search with values of C = {2-4, 2-3, …, 212} and γ = {2-5, 2-4, …, 23} was performed. 

Subsequently, a refined grid-search in the neighborhood of the resulting C and γ pair was 

conducted to determine the final parameterization. A C-SVM was trained for each feature 

subset (Section 3.2.1) as well as for the whole feature set.  
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RF represent a decision-tree-based ensemble learning method for classification and regression 

introduced by Breiman (2001). Ensemble learning methods build a prediction model by 

utilizing the strength of a collection of simple base models. Therefore, RF grow multiple 

decision trees on random subsets of the training data. The high variance among individual 

trees, letting each tree vote for the class membership, and assigning the respective class 

according to the majority of the votes, allows the accurate and robust classification of unseen 

data with little need for fine-tuning, even in the presence of many noisy variables (ibid., 

Stumpf and Kerle, 2011). Compared to the classification and regression tree approach 

(Breiman 1984) used in Sarabandi and Kiremidjian (2007), RF represents a bagged predictor 

and thus always yields higher accuracies (Han and Kamber 2006). 

The parameters that need to be specified for generating a RF model consist of the number of 

classification trees to be grown ntree and the number of features mtry used at each node. Both 

parameters are evaluated by means of the RF inherent out-of-bag (OOB) error measure on the 

average of 10 independent trials for this study (RF deployed in this paper were carried out 

with the randomForest package (Liaw and Wiener, 2002) within the statistical computation 

environment R (R Core Team, 2013)). An increase of ntree causes an improvement of 

classification accuracy until the performance converges. Since adding more trees to the model 

does not induce over-fitting, it is possible to run past the point of conversion to obtain more 

confident OOB values. However, adding more trees simultaneously rises computation time. 

To determine a suitable tradeoff, models were trained with all features for ntree = 1, 2, 5, 10, 

20, …, 50, 100, 200, …, 1000, 2000, …, 5000, 10000. We observed that the conversion point 

for our data set is located between a ntree value of 200 and 300. To provide a reliable OBB 

error estimate and maintaining the computation times in a reasonable range, we chose a ntree 

value of 500. This is in a good agreement with the RF parameter study performed by Genuer 

et al. (2008). According to Breiman (2001) a value for mtry = ��, with p denoting the number 

of input features, yields near optimum classification results. However, studies revealed that 

larger values of mtry might perform better for high-dimensional data sets (Breiman, 2002, 

Genuer et al., 2008). Accordingly, the original training data with all features were used to 

check for a possible increase in performance. As suggested by Genuer et al. (2008), 

classification models were learned with nine mtry values (1, ��/2, ��, 2��, 4��, � 4⁄ , � 2⁄ , 

3� 4⁄ , p), with ntree = 500 for each model. We observed that mtry = �� shows near optimum 

results, coping with the dimensionality of the whole feature set. Thus, we used this 

parameterization since it is also very favorable from a computational point of view.  
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4. Results and Discussion 

4.1 Detected Outliers 

Seven OC-SVM models were learned from the labeled samples to identify and exclude 

outliers from both the in situ data and the building inventory. Each model represents a 

descriptor of the SBST class it was trained on. Overall, from the 573 labeled samples 32 

samples were detected as outliers and thus were removed from the in situ data set (Table 2a). 

Subsequently, each of the seven models was applied separately to the building inventory. The 

amount of buildings classified as class members and outliers according to each model is 

shown in Table 2b. 

SBSTs a) in situ data b) building inventory 
class members outliers class members outliers 
abs. percent abs. percent abs. percent abs. percent 

CM 265 97.43 7 2.57 79,543 90.83 8,030 9.17 
RC low 186 97.89 4 2.11 77,963 89.03 9,610 10.97 
RC 
high 

14 77.78 4 22.22 4,543 5.19 83,030 94.81 

URM 29 87.88 4 12.12 63,560 72.58 24,013 27.42 
TF res 25 80.65 6 19.35 56,113 64.08 31,460 35.92 
TF non-
res 

12 80.00 3 20.00 29,113 33.24 58,460 66.76 

SF 10 71.43 4 28.57 14,188 16.20 73,385 83.80 

Table 2 Results of the outlier detection approach for the in situ data (a) and building 
inventory (b) with affiliated numbers and shares of class members and outliers.  

 

As can be seen from Table 2b, notable overlapping between individual classes exists. 

Especially CM, RC low, and URM show a certain degree of conformity. TF res and TF non-

res seem to be more distinctive from other SBSTs, but feature some interference between 

each other. RC high and SF appear to be the most distinctive SBSTs, what seems plausible 

since these SBSTs are generally characterized by a unique physical appearance. However, the 

task was not to discriminate one class from another, but to identify instances that feature a 

distinctive dissimilarity in relation to the in situ data. Overall, 5587 instances from the entire 

building inventory were not assigned to any of the seven SBSTs by the learned models and 

were therefore excluded.  

4.2 Relevance of Features 

To identify the most relevant features for building robust multiclass classification models 

several feature selection algorithms were applied on the data. The features evaluated as most 

important are shown in Fig. 5. It contains the 15 best ranked features according to the 

different feature ranking algorithms and the subset revealed from the CFS approach. These 

features contributed the largest shares to raise model performance for both SVM and RF 

(Section 4.3, Fig. 6).  
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Fig. 6. Performance of the SVM (a) and RF (b) models as a function of the different feature 
sets. The feature sets were built based on the feature selection techniques described in section 
3.2.1. The x-axis lists the number of features contained in the respective feature set and the y-
axis reveals the corresponding κ statistic of the learned models.   

It is worth mentioning that the RF models built on the features ranked by the RelF approach 

show a comparatively distinctive performance with a few number of features.  Especially the 

ten best ranked features induce a distinctive performance for both SVM and RF, what 

indicates the usefulness of these features (see Fig. 5) for estimating SBSTs. This feature set is 

constituted by features from different feature categories. Analogous, the best five features as 

evaluated by the GR approach show distinctive performances and represent also features from 

different categories. Contrarily, the best five features as evaluated by the COR approach 

belong only to one category and perform worst. Moreover, the CFS subset covers a broad 

spectrum of features from different categories and shows a distinctive positive performance. 

Overall, this gives an indication that features from different categories are complementary and 

hence yield higher performances. Regarding the actual κ values, it has to be accentuated that 

accuracy estimates are very optimistic and do very unlikely reveal real generalization 

capabilities on unseen data. Due to the application of the SMOTE approach, the training data 

contains a large fraction of synthetic samples that are very similar to the original in situ data. 

This leads to well bordered clusters in feature space, what makes it possible to learn robust 

models on the basis of very scarce in situ data. Performing a cross-validation with such a data 

set tends to produce very optimistic accuracy estimates. However, the accuracy estimates in 

terms of κ statistic served for the comparison and selection of models. 

4.4 Classification of Building Inventory and Plausibilization of SBSTs Estimation 

For the application and further plausibilization of the approach, we chose the SVM model 

built with the unreduced feature vector, since it yields the highest estimated κ statistic of all 

models. The spatially distributed estimation of SBSTs can be seen in Fig. 7a. Analogous to 

the shares of the different SBSTs of the in situ data, the building inventory of Padang is 

dominated by CM and RC low buildings. The first is more dominant in remote parts of the 

city and the latter shapes the central parts. Spatial concentrations of URM buildings appear in 

different sections of the city, whereas RC high buildings can be found primarily in the core 

area parallel to the coast line. TF buildings can be found in many parts of the city. They occur 

both in a diffuse and clustered manner. SF buildings appear most dominantly in the south-

eastern parts. Outliers primarily represent very huge buildings that are located in central parts 

or small, informal structures that are located in very remote parts. As described in the 

previous section, the estimated κ statistic of the models is most likely too optimistic. Thus, we 

use the in situ samples that could not be unambiguously assigned to individual buildings (see 

Section 2.3) for a further plausibilization. The location of the affiliated building is not exactly 

known, but must be very close to the respective in situ sample.  
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September 2009 earthquake; b) building inventory loss for several MMIs; c) spatially 
distributed building damage for a MMI of 9.  

The presented approach allows to quantify building damage in a detailed way and make 

damage estimations spatially explicit by e.g., localizing hot spots within a city. These are key 

features for earthquake loss modeling and predictions. 

 
5. Conclusions and Outlook 
 
 
This study aims to demonstrate how to estimate seismic building structural types by means of 

a remote sensing based approach and to evaluate the suitability of the data and methods. As 

there is no obvious correlation between the digital information of pixels and SBSTs, we 

showed how to derive sets of valuable features to characterize the urban environment. For this 

purpose we utilized very high resolution multispectral EO-data, height information and multi-

temporal medium resolution multispectral EO-data. It turned out that a combinatory use of 

features from different feature categories related to building shape and height, spatial context, 

and spectral information appears most promising. In this manner, we proposed a hierarchical 

supervised classification scheme that adapts techniques from the machine learning domain to 

estimate SBSTs. By means of a sequential procedure including feature selection, outlier 

detection, generation of synthetic samples, and learning non-parametric SVM and RF 

classification models, SBSTs could be estimated spatially distributed with plausible 

accuracies. Thus, we conclude that remote sensing data and methods have a high capability to 

support large area estimation of SBSTs.  

A spatially distributed and accurate estimation of SBSTs is a critical input for ELE models as 

illustrated in Section 4.5 and thus represents a relevant contribution to seismic risk mitigation 

and preparedness activities. Furthermore, related to an actual earthquake hazard, post-event 

earthquake loss estimations for response and recovery activities can be made, e.g. also 

advanced earthquake early warning systems include the capacity for the rapid assessment of 

damage (Picozzi et al., 2013). Such information would also be useful for a guided and thus 

more accurate post-event damage mapping (Dell’Acqua and Gamba, 2012). Beyond, remote 

sensing has the capability to quantify exposed people (Taubenböck et al., 2009b), what also 

allows the estimation of human casualties within the aforementioned model setting.  

However, from a technical perspective, future research can utilize the enhanced resolution 

characteristics of latest and future spaceborne missions, such as WorldView-2 and 3, 

CARTOSAT-3 or ALOS-3, what allows the calculation of more sophisticated feature vectors 

(Novack et al., 2011). In addition, the application of computationally intensive wrapper 

methods for feature selection should be investigated. Regarding the actual classification task, 

the application of a semisupervised approach (e.g. Bruzzone et al., 2006), which also encodes 

some knowledge from the unlabeled data, appears promising especially when only very few 

labeled samples are available. To this end, active learning methods (e.g. Tuia et al., 2009) 

enable a guided selection of the most feasible samples. Nevertheless, the most exigent task 

regarding future research comprises the systematic and comprehensive collection of accurate 

georeferenced in situ data for both SBSTs and experienced earthquake damage by structural 
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engineers. Only this way the remote sensing community can fully demonstrate the usability of 

EO-data for SBSTs estimation and ELE modeling. This is why we see a need to trigger an 

open dialogue between the remote sensing and earthquake engineering community to share 

data and gather a common understanding about e.g., typologies. We believe that only a close 

interdisciplinary collaboration will enable systematic and valid large-area estimations of 

SBSTs and earthquake loss of dynamic earthquake prone urban areas around the globe. 
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