Hillenbrand, Ulrich and Fuchs, Alexander (2011) An experimental study of four variants of pose clustering from dense range data. Computer Vision and Image Understanding, pp. 1427-1448. Elsevier. doi: 10.1016/j.cviu.2011.06.007. ISSN 1077-3142.
![]() |
PDF
3MB |
Official URL: http://www.sciencedirect.com/science/article/pii/S1077314211001445
Abstract
Parameter clustering is a robust estimation technique based on location statistics in a parameter space where parameter samples are computed from data samples. This article investigates parameter clustering as a global estimator of object pose or rigid motion from dense range data without knowing correspondences between data points. Four variants of the algorithm are quantitatively compared regarding estimation accuracy and robustness: sampling poses from data points or from points with surface normals derived from them, each combined with clustering poses in the canonical or consistent parameter space, as defined in Hillenbrand (2007). An extensive test data set is employed: synthetic data generated from a public database of three-dimensional object models through various levels of corruption of their geometric representation; real range data from a public database of models and cluttered scenes. It turns out that sampling raw data points and clustering in the consistent parameter space yields the estimator most robust to data corruption. For data of sufficient quality, however, sampling points with normals is more efficient; this is most evident when detecting objects in cluttered scenes. Moreover, the consistent parameter space is always preferable to the canonical parameter space for clustering.
Item URL in elib: | https://elib.dlr.de/73251/ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | |||||||||
Title: | An experimental study of four variants of pose clustering from dense range data | |||||||||
Authors: |
| |||||||||
Date: | October 2011 | |||||||||
Journal or Publication Title: | Computer Vision and Image Understanding | |||||||||
Refereed publication: | Yes | |||||||||
Open Access: | Yes | |||||||||
Gold Open Access: | No | |||||||||
In SCOPUS: | Yes | |||||||||
In ISI Web of Science: | Yes | |||||||||
DOI: | 10.1016/j.cviu.2011.06.007 | |||||||||
Page Range: | pp. 1427-1448 | |||||||||
Publisher: | Elsevier | |||||||||
ISSN: | 1077-3142 | |||||||||
Status: | Published | |||||||||
Keywords: | robust estimation; pose estimation; range data; parameter density; clustering; performance evaluation | |||||||||
HGF - Research field: | Aeronautics, Space and Transport | |||||||||
HGF - Program: | Space | |||||||||
HGF - Program Themes: | Space System Technology | |||||||||
DLR - Research area: | Raumfahrt | |||||||||
DLR - Program: | R SY - Space System Technology | |||||||||
DLR - Research theme (Project): | R - RMC - Kognitive Intelligenz und Autonomie (old) | |||||||||
Location: | Oberpfaffenhofen | |||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (until 2012) > Robotic Systems | |||||||||
Deposited By: | Hillenbrand, Ulrich | |||||||||
Deposited On: | 09 Jan 2012 11:44 | |||||||||
Last Modified: | 06 Sep 2019 15:19 |
Repository Staff Only: item control page