DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

A Hierarchical Spatio-Temporal Markov Model for Improved Flood Mapping Using Multi-Temporal X-Band SAR Data

Martinis, Sandro and Twele, André (2010) A Hierarchical Spatio-Temporal Markov Model for Improved Flood Mapping Using Multi-Temporal X-Band SAR Data. Remote Sensing, 2 (9), pp. 2240-2258. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs2092240.

Full text not available from this repository.

Official URL: http://www.mdpi.com/2072-4292/2/9/2240/pdf


In this contribution, a hybrid multi-contextual Markov model for unsupervised near real-time flood detection in multi-temporal X-band synthetic aperture radar (SAR) data is presented. It incorporates scale-dependent, as well as spatio-temporal contextual information, into the classification scheme, by combining hierarchical marginal posterior mode (HMPM) estimation on directed graphs with noncausal Markov image modeling related to planar Markov random fields (MRFs). In order to increase computational performance, marginal posterior-based entropies are used for restricting the iterative bi-directional exchange of spatio-temporal information between consecutive images of a time sequence to objects exhibiting a low probability, to be classified correctly according to the HMPM estimation. The Markov models, originally developed for inference on regular graph structures of quadtrees and planar lattices, are adapted to the variable nature of irregular graphs, which are related to information driven image segmentation. Entropy based confidence maps, combined with spatio-temporal relationships of potentially inundated bright scattering vegetation to open water areas, are used for the quantification of the uncertainty in the labeling of each image element in flood possibility masks. With respect to accuracy and computational effort, experiments performed on a bi-temporal TerraSAR-X ScanSAR data-set from the Caprivi region of Namibia during flooding in 2009 and 2010 confirm the effectiveness of integrating hierarchical as well as spatio-temporal context into the labeling process, and of adapting the models to irregular graph structures.

Item URL in elib:https://elib.dlr.de/66314/
Document Type:Article
Title:A Hierarchical Spatio-Temporal Markov Model for Improved Flood Mapping Using Multi-Temporal X-Band SAR Data
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Date:17 September 2010
Journal or Publication Title:Remote Sensing
Refereed publication:Yes
Open Access:Yes
Gold Open Access:Yes
In ISI Web of Science:Yes
Page Range:pp. 2240-2258
Publisher:Multidisciplinary Digital Publishing Institute (MDPI)
Keywords:Markov random fields (MRFs); hierarchical marginal posterior mode (HMPM) estimation; irregular graph; spatio-temporal context; TerraSAR-X; automatic thresholding; generalized Gaussian distribution; change detection; flood mapping; flood possibility mask; Namibia
HGF - Research field:Aeronautics, Space and Transport (old)
HGF - Program:Space (old)
HGF - Program Themes:W EO - Erdbeobachtung
DLR - Research area:Space
DLR - Program:W EO - Erdbeobachtung
DLR - Research theme (Project):W - Vorhaben CHARTA & EO-Krisenlagezentrum (old)
Location: Oberpfaffenhofen
Institutes and Institutions:German Remote Sensing Data Center > Civil Crisis Information and Geo Risks
Deposited By: Martinis, Sandro
Deposited On:23 Nov 2010 13:53
Last Modified:14 Dec 2019 04:25

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.