DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Nonlinear mechanisms and higher-order statistics in biological vision and electronic image processing: review and perspectives

Zetzsche, Christoph and Krieger, Gerhard (2001) Nonlinear mechanisms and higher-order statistics in biological vision and electronic image processing: review and perspectives. Journal of Electronic Imaging, 10 (1), pp. 56-99. doi: 10.1117/1.1333056.

Full text not available from this repository.


The classical approach in vision research—the derivation of basically linear filter models from experiments with simple artificial test stimuli—is currently undergoing a major revision. Instead of trying to keep the dirty environment out of our clean labs we put it now right into the focus of scientific exploration. An increasing number of scientists are using natural images in their experimental work, and concepts from statistics and information theory are employed for the theoretical modeling of the results. The new approach has a close relation to basic engineering strategies for electronic image processing, since its major concept is that biological sensory systems exploit the statistical redundancies of the environment by appropriate neural transformations. The standard engineering methods are not sufficient, however. Even such a basic biological feature as orientation selectivity requires the consideration of higher-order statistics, like multivariate wavelet statistics, cumulants, or polyspectra. Furthermore, there exists an abundance of nonlinear phenomena in biological vision, for example the phase invariance of complex cells, cortical gain control, end-stopping, and a variety of extra-classical receptive field properties. These amount to nonlinear combinations of linear wavelet filter outputs, which are required to exploit higher-order statistical dependencies, and make it necessary to consider unconventional modeling approaches like differential geometry or Volterra–Wiener systems. By use of such methods we cannot only gain a deeper understanding of the adaptation of the visual system to the complex natural environment, but we can also make the biological system an inspiring source for the design of novel strategies in electronic image processing.

Item URL in elib:https://elib.dlr.de/5938/
Document Type:Article
Additional Information: LIDO-Berichtsjahr=2000,
Title:Nonlinear mechanisms and higher-order statistics in biological vision and electronic image processing: review and perspectives
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Zetzsche, ChristophArbeitsgruppe Kognitive Neuroinformatik, Universität Bremen, GermanyUNSPECIFIEDUNSPECIFIED
Journal or Publication Title:Journal of Electronic Imaging
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In ISI Web of Science:Yes
Page Range:pp. 56-99
Keywords:Nonlinear image operators, higher-order statistics, image coding, intrinsic dimensionality, independent component analysis, orientation selectivity, Volterra-Wiener systems, image decompositions, non-Gaussian statistics, sparse coding, scale-space statistics, self-similarity, wavelet statistics, gain control, Gaussian curvature, curvature tuning, polyspectra, cumulants, extra-classical receptive fields, end-stopping, neural networks
HGF - Research field:Aeronautics, Space and Transport (old)
HGF - Program:Space (old)
HGF - Program Themes:W EO - Erdbeobachtung
DLR - Research area:Space
DLR - Program:W EO - Erdbeobachtung
DLR - Research theme (Project):W - Vorhaben Entwicklung eines Mini-SAR (old)
Location: Oberpfaffenhofen
Institutes and Institutions:Microwaves and Radar Institute
Deposited By: Krieger, Dr.-Ing. Gerhard
Deposited On:02 Feb 2006
Last Modified:06 Jan 2010 19:34

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.