Carcereri, Daniel und Dell'Amore, Luca und Tebaldini, Stefano und Rizzoli, Paola (2026) Insights on the working principles of a CNN for forest height regression from single-pass InSAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2026.3654195. ISSN 1939-1404.
|
PDF
- Postprintversion (akzeptierte Manuskriptversion)
8MB |
Kurzfassung
The increasing use of Artificial Intelligence (AI) models in Earth Observation (EO) applications, such as forest height estimation, has led to a growing need for explainable AI (XAI) methods. Despite their high accuracy, AI models are often criticized for their "black-box" nature, making it difficult to understand the inner decision-making process. In this study, we propose a multifaceted approach to XAI for a convolutional neural network (CNN)-based model that estimates forest height from TanDEM-X single-pass InSAR data. By combining domain knowledge, saliency maps, and feature importance analysis through exhaustive model permutations, we provide a comprehensive investigation of the network working principles. Our results suggests that the proposed model is implicitly capable of recognizing and compensating for the SAR acquisition geometry-related distortions. We find that the mean phase center height and its local variability represents the most informative predictor. We also find evidence that the interferometric coherence and the backscatter maps capture complementary but equally relevant views of the vegetation. This work contributes to advance the understanding of the model's inner workings, and targets the development of more transparent and trustworthy AI for EO applications, ultimately leading to improved accuracy and reliability in the estimation of forest parameters.
| elib-URL des Eintrags: | https://elib.dlr.de/222007/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
| Titel: | Insights on the working principles of a CNN for forest height regression from single-pass InSAR data | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 2026 | ||||||||||||||||||||
| Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Ja | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||
| DOI: | 10.1109/JSTARS.2026.3654195 | ||||||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
| ISSN: | 1939-1404 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Synthetic Aperture Radar, SAR Interferometry, TanDEM-X, Forest Height, Deep Learning, Convolutional Neural Network, Explainable AI | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - AI4SAR | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme Institut für Hochfrequenztechnik und Radarsysteme > Satelliten-SAR-Systeme | ||||||||||||||||||||
| Hinterlegt von: | Carcereri, Daniel | ||||||||||||||||||||
| Hinterlegt am: | 19 Jan 2026 09:00 | ||||||||||||||||||||
| Letzte Änderung: | 19 Jan 2026 09:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags