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Abstract—The increasing use of Artificial Intelligence (AI)
models in Earth Observation (EO) applications, such as forest
height estimation, has led to a growing need for explainable
AI (XAI) methods. Despite their high accuracy, AI models
are often criticized for their "black-box" nature, making it
difficult to understand the inner decision-making process. In
this study, we propose a multifaceted approach to XAI for
a convolutional neural network (CNN)-based model that esti-
mates forest height from TanDEM-X single-pass InSAR data.
By combining domain knowledge, saliency maps, and feature
importance analysis through exhaustive model permutations, we
provide a comprehensive investigation of the network working
principles. Our results suggests that the proposed model is
implicitly capable of recognizing and compensating for the
SAR acquisition geometry-related distortions. We find that the
mean phase center height and its local variability represents
the most informative predictor. We also find evidence that the
interferometric coherence and the backscatter maps capture
complementary but equally relevant views of the vegetation. This
work contributes to advance the understanding of the model’s
inner workings, and targets the development of more transparent
and trustworthy AI for EO applications, ultimately leading to
improved accuracy and reliability in the estimation of forest
parameters.

Index Terms—Synthetic Aperture Radar, SAR Interferometry,
TanDEM-X, Forest Height, Deep Learning, Convolutional Neural
Network, Explainable AI

I. INTRODUCTION

Evidence from recent studies suggests that data-driven ap-
proaches for forest parameter estimation from Earth Observa-
tion (EO) data may achieve accuracies comparable to, and in
some cases exceeding, that of physical-based models, even in
the absence of privileged data sources [1] [2] [3]. The reason
behind these improvements remains fundamentally unclear as
machine learning models, especially those based on Deep
Learning (DL), remain notoriously difficult to explain. This
lack of interpretability is clearly connected to the large number
of model parameters (typically in the order of millions) and the
use of multiple nonlinear operations, rendering the represen-
tation spaces created by these models often incomprehensible.
This aspect is arguably made more difficult by the fundamental
challenge posed by data leakage, in which overoptimistic
results might lead to incorrect interpretations [4].
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The so-called "black-box" nature of AI models increasingly
represents a practical limit to their deployment, as interests of
scientific, economic, and security nature call for more explain-
able models. On the one hand, human-interpretable explana-
tions for models’ decisions become a requirement in contexts
where prediction-guided decision processes hold intrinsic risks
and therefore require knowledge about the trustworthiness of
the prediction. On the other hand, an improved understanding
of the decision-making process can lead to better accuracy,
since, in response, developers can learn to inform the model
in a more effective way [5] [6].

Within the broader context of Earth observation (EO),
explainable AI (XAI) efforts constitute a limited, although
growing, area of research [7], which is predominantly con-
centrated on classification tasks [6] [8]. Possible strategies to
improve interpretability include the definition of inherently
interpretable models (e.g., linear regression, random forest,
Bayesian deep learning) [5] [9], the incorporation of domain
knowledge [10], the integration of physical-based models [11],
and the use of post hoc explanation methods [7] [12]. A
variety of these strategies, first proposed in the context of
computer vision tasks, have found their way into EO appli-
cations [6]. Much of the existing research efforts are limited
to the adoption of a single explainability approach [13] [8].
The most commonly used ones carry out feature importance
analyses [7], which consist of the selective removal of input
features to evaluate their impact on model performance [14].
Due the large number of model parameters, such analyses
remain prohibitive to realize in practice and, as a consequence,
they are commonly approximated using perturbation-based
methods such as occlusions [15], LIME [16], and SHAP
[17]. Unfortunately, these typically fail to consider the relative
scaling of features within the models, or tend to confuse
feature relevance with out-of-distribution (OOD) performance
[18]. Also commonly used are gradient-based methods for the
generation of Saliency maps [7]. These approaches include, but
are not limited to, Guided Backpropagation [19], Integrated
Gradient [18] and Grad-CAM [20]. These are intended to
provide human-intelligible explanations, but have also been
shown to perform image recovery rather than relevance at-
tribution, leading to unreliable interpretations of a model’s
decision-making process [21].

In this study, we offer a detailed analysis on the inner
working principles of a CNN-based model for the regression of
forest height measurement from TanDEM-X InSAR data. We
achieve this by relying on a set of XAI methods and cross-
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checking their results. First, the proposed CNN is designed
to include domain knowledge. Second, we rely on the use
of saliency maps to assess, for each predictor (i.e., the input
features to the model), the relevance of their spatial context in
the forest height inversion problem. Afterwards, we perform a
detailed feature importance analysis by training, validating and
testing over 100 individual model-permutations on different in-
put feature subsets. We explicitly capture intra-run variance by
independently repeating each model permutation three times,
allowing for better isolating the feature relevance from the
intrinsic fluctuations of the training procedure. By design, we
avoid the pitfalls of data leakage by geographically separating
each subset. We adopt a physics-aware stance to the analysis
of these experiments, being particularly careful at considering
the acquisition processes and the co-dependencies between the
input features [22], and taking into account the insights offered
by physical-based models [23].

The paper is structured as follows. Sec. II introduces the
satellite acquisitions and the reference data used for the
experiments. Sec. III describes the model architecture, the
training and testing strategies, as well as the XAI methods.
Sec. IV presents the collection of experiments and their results.
Sec. V discusses and combines the findings across different
experiments, and offers further analyses to complete the inter-
pretation of the results. Finally, Sec. VI presents a summary of
the work, the conclusions and possible future developments.

II. DATASET

A. Study Area and Reference Data

The study area considered in this work coincides with
that covered by the LiDAR-based forest height measurements
performed during the 2016 AfriSAR campaign [24] [25]. It
consists of five heterogeneous areas of interest (shown in
Fig. 1), covering different tropical forests and a Savannah
region situated within the Gabonese Republic. The refer-
ence forest height estimates are derived from full-waveform
LiDAR measurements, acquired using the NASA airborne
Land Vegetation and Ice Sensor (LVIS) instrument [26] in
February and March 2016. Each of the densely sampled laser
footprints is used to compute forest height values, expressed
as relative height (RH), and aggregated to generate raster maps
with a sampling resolution of 25 m. The RH99 statistic is
used as reference measurement for this work, which is the
height corresponding to the 99th percentile of the returned
energy. Furthermore, also the LVIS-derived and rasterized
digital terrain model (DTM) is used as a reference for the
real topographic elevation, measured at the bottom of the
vegetation.

B. TanDEM-X Data

The TanDEM-X mission is a spaceborne interferometric
SAR system, consisting of two twin satellites acquiring data at
X-band and orbiting in a varying close orbit formation, which
allows for the generation of single-pass DEM products [27],
[28].

In this work, we consider only bistatic TanDEM-X data
acquired in stripmap mode in HH polarization. Due to the

Fig. 1: The proposed geographic sub-setting of the AfriSAR
campaign study areas into training, validation and testing

limited acquisition resources of the mission, a long period
from December 2010 to the end of 2022 is considered for the
products, allowing to adequately capture a diversified combi-
nation of perpendicular baselines and incidence angles across
each of the study sites. The potential effects of the temporal
lag between the LiDAR and TanDEM-X measurements has
been previously addressed in [3] and has been found to have
a negligible impact on the results. Therefore, we do not further
consider this aspect in the current work.

Each product, consisting of a primary (s1) and a secondary
(s2) acquisition, has been focused and co-registered using
the operational TanDEM-X processor (ITP) [29]. Starting
from this co-registered single-look complex (CoSSC) format,
different higher level features are computed or estimated. The
intensity image for the primary acquisition is calibrated to
compute the radar brightness β0, which is in turn used to
compute the backscattering coefficient σ0 as:

σ0 = β0 sin(θinc), (1)

where θinc is the incidence angle estimated using the TanDEM-
X Global Edited DEM product at 30 m resolution [30]. The
application of further terrain flattening and terrain correction
steps (γ0) are specifically avoided, as over forested areas the
quality of the X-band DEM is impacted by the presence of
vegetation.

The interferometric image pair s1 and s2 is used to estimate
the normalized complex correlation coefficient γ as

γ ≈
∑i=1

N

{
s1,is

∗
2,i

}√∑i=1
N |s1,i|2

√∑i=1
N |s2,i|2

, (2)

where N = 121 is the number of samples within an 11× 11
window (as used in standard TanDEM-X InSAR products [31])
for the asymptotically unbiased coherence estimation [32], and
s∗2 is the complex conjugate of the secondary acquisition.

The argument of this quantity (∠γ) forms the interferogram,
which is used for the generation of the InSAR DEM, here
defined as raw DEM hacq

dem to distinguish it from the other
DEM products considered in this study. It is relevant to this
study to recall that an InSAR-derived DEM measures the
topographic elevation corresponding to the location of the
mean phase center within a given resolution cell. Furthermore,
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the SAR signal at X-band has a modest penetration capability
into volumetric targets [23]. These factors result in the InSAR
DEM being affected by a positive elevation bias (i.e., com-
pared to the elevation of the ground), which depends on the
height and structure of the vegetation, as well as the InSAR
acquisition geometry [33].

The modulus of the normalized complex correlation co-
efficient (|γ|) is called interferometric coherence γtot and it
assesses the amount of noise affecting the interferogram [32].

It is possible to determine the sources and magnitudes of
individual noise terms by factorizing γtot as [34]

γtot = γSNR · γquant · γamb · γrg · γaz · γtemp · γvol, (3)

where each term on the right-hand side identifies a unique
decorrelation contribution, namely those due to a limited
signal-to-noise ratio (γSNR), quantization errors (γquant), am-
biguities (γamb), baseline separation (γrg), relative shift of
the Doppler spectra (γaz), temporal baseline (γtemp) and
the presence of volumetric scatterers (γvol). The latter is of
particular interest to this study as it quantifies the amount
of interferometric decorrelation resulting from interactions
with volumetric targets, such as forests. Given the single-pass
acquisition capability of the TanDEM-X mission, it is possible
to ignore temporal decorrelation events (i.e., γtemp = 1). This
enables one to directly estimate γvol by dividing γtot by the
product of the remaining decorrelation terms. In practice, we
estimate (γquant) using error profiles pre-computed for each
quantization setting, we estimate (γsnr) using noise equivalent
sigma zero profiles pre-computed for each TanDEM-X beam,
and we account an additional decorrelation factor of 0.98 for
the remaining terms in eq. (3). The comprehensive derivation
of these profiles and their motivation is detailed in [34].

Furthermore, we compute two additional geomaps aimed at
correctly informing the inversion model about the SAR and
InSAR acquisitions geometries, respectively. First, we use the
annotated information of the position of the primary satellite
and the topographic height measured by hacq

dem to generate the
local incidence angle map θacqlia . Second, we use information
on the satellites’ positions to generate a height of ambiguity
hamb map, which is defined as the vertical change in height
corresponding to a complete phase cycle in the interferogram.
For the bistatic case it is defined as [27]

hamb =
λ · r · sin θinc

B⊥
, (4)

where B⊥ is the baseline component orthogonal to the line
of sight, λ is the electromagnetic wavelength, and r is the
slant-range distance.

III. METHODOLOGY

This section introduces the DL-based regression framework,
detailing the model architecture, and the training, validation
and testing procedures, as well as the XAI approaches.

A. Model Architecture

The model used in this work is based on that of [3] [35].
It consists of the fully-convolutional network (FCN) shown

in Fig. 2, which was specifically designed for the task of
regressing forest parameters from satellite InSAR data. We
define as the reference for the proposed experiments the
particular model which makes use of the following set of
TanDEM-X-derived predictors:

• The backscattering coefficient in HH polarization, σHH
0 ,

• The raw acquisition DEM, hacq
dem,

• The estimated total interferometric coherence, γtot,
• The estimated volume decorrelation factor, γvol,
• The local incidence angle computed on hacq

dem, θacqlia ,
• The height of ambiguity, hamb.
In general, CNNs operate by performing multiple cross-

correlation operations between the input features and multiple
kernel filters, which are defined by the training process. The
resulting set of features is applied to a non-linear function
to generate the final output. These operations are repeated
multiple times in sequence according to a flow-through design,
taking as input the features from the previous block to generate
those for the following one. The last block has the special role
of generating the final forest parameter estimate. Crucially, for
non-unitary kernel sizes, the relationship between neighboring
pixels (colloquially referred to as texture) is considered during
the computation of the output pixels. The overall image extent
that is taken into account by the model, for each predicted
pixel, defines its receptive field.

B. Model Training, Validation and Testing

For training, validating and testing the model, each of
the regions of interest is split into three distinct and non-
overlapping sub-regions, one for each dedicated subset (see
Fig. 1). This choice represents a trade-off between accurately
capturing the heterogeneity found across the five study areas
and minimizing data leakage, that is, an excessive geographic
correlation between training, validation, and test sets leading
to inflated performance estimates. Matching input and output
feature-pairs are sourced and built from acquisitions that
geographically overlap with the reference data. In particular,
the training and validation steps are performed on batches of
15x15 pixel patches that are sampled from their respective
subsets.

Training is performed using a fully-supervised approach,
consisting in the minimization of the following two-term
objective function

L =
1

n

n∑
i=1

(ŷi − yi)
2
+ λ ·

m∑
j=1

w2
j , (5)

where ŷi is the ith predicted sample, yi is the corresponding
value for the ith reference sample, n is the total number
of samples, wj is the jth model coefficient, m is the total
number of weights and λ = 10−4 is the weighting factor for
the l2-norm term. At each iteration, the training loss value
achieved for a given batch is used in combination with the
backpropagation algorithm to compute the loss gradient with
respect to each trainable model parameter, and it is used in
conjunction with the Adam optimizer to update their values
[36]. This process is repeated multiple times across every
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Fig. 2: The proposed fully convolutional deep learning model. The subscript numbers indicate the number of kernel filters.

training sample and monitored through the co-evolution of
the independently computed validation loss. An early-stopping
heuristic is adopted to determine the stagnation of the training
process, allowing for optimizing both training time and model
generalization. Overall, 18 · 106 patches are available for
training and another 1.2 ·106 are used for validation. Training
is performed on a single NVIDIA A100 40GB GPU, lasting
from a minimum of 1 up to a maximum of 3 hours to complete,
depending on the considered predictor set and on the random
parameter initialization.

At inference time, the trained model is applied to each
TanDEM-X product in its entirety and is tested on the areas
that intersect with the available LVIS data. An example of
the TanDEM-X input features and the corresponding deep
learning-predicted canopy height map can be seen in Fig. 3.
The performance of each trained model is evaluated on a di-
verse suite of metrics, necessary to correctly highlight potential
issues in the heterogeneous testing conditions. This consists
of the mean error (ME), the mean absolute error (MAE),
the mean absolute percentage error (MAPE), the root mean
squared error (RMSE) and the coefficient of determination
(R2), which are defined as follows

ME =
1

n

n∑
i=1

(ŷi − yi) , (6)

MAE =
1

n

n∑
i=1

|ŷi − yi| , (7)

MAPE =
100

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi + ϵ

∣∣∣∣ , (8)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)
2
, (9)

R2 = 1−
∑n

i=1 (ŷi − yi)
2∑n

i=1 (yi − ȳi)
2 , (10)

where ϵ = 10−10 is added to avoid divisions by zero. Each
of the experimental setups under investigation is re-trained for
three times from randomly sampled initializations, such as to
capture the effects of inter-run variance on performance.

C. Explainable AI Methods

This section introduces the XAI methods used for the
investigation into the decision-making process of the model.
Let the proposed CNN model f be a function

f : RH×W×C → R, (11)

with X = (x1, . . . ,xC) the set of input features and ŷ = f(X)
the predicted output feature, where H and W represent the
dimensions of the input context and C is the number of input
channels or features. Then a (generic) explanation method Ψi

attributes a measure of contribution or relevance to the generic
input feature xi for a given prediction f(X). In this work, we
consider:

a) Saliency Maps: In order to capture the spatial rela-
tionships learned by the model, we propose the generation
of saliency maps that quantify the impact of the predictors’
pixels on the model output. The most straightforward and
interpretable approach is based on the backprogagation of
the gradient of the prediction f(X) with respect to the input
feature xi [37], such that

Ψgrad
i = ∇xi

f(X) = (
∂f(X)

∂x1,1,i
, . . . ,

∂f(X)

∂xH,W,i
), (12)

which highlights the sensitivity of the output value to a
(signed) perturbation for each value in the input, as well as the
position of these values within the considered spatial context.
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Fig. 3: Example of TanDEM-X-derived input features (a-f) and corresponding deep learning-derived canopy height prediction map (g).
The original acquisition has been acquired in stripmap mode in HH polarization over the study area of Lopé, and has Acquisition Item ID
(AIID) 1010159. The missing values (patches in white) correspond to invalids that have been masked in the input data and propagated to
the prediction.

A natural extension to this idea is represented by the element-
wise product with the input itself [38], such that

Ψgrad×input
i = xi ⊙∇xi

f(X), (13)

which effectively forms the linear approximation (minus the
bias term) to the model’s output. This representation is prefer-
able over the former, as it uniformly expresses all sensitivity
maps in the same units and removes the dependency on a given
feature’s dynamic range. Even though more advanced strate-
gies exist in the literature, such as Deconvnet [15], Guided
Backpropagation [19], and Grad-CAM [20], we favor the sim-
pler grad×input approach as it holds a more straightforward
and potentially less misleading mathematical interpretation
[21]. We are also aware of the reported saturation problems
of the approach [38], given by the fact that the gradient only
expresses the slope of the linear approximation to the model,
but does not recover its intercept, which limits one to capture
the sensitivity to changes to the input, but not its absolute
relevance. The Integrated Gradient approach [18] promises
to solve this shortcoming by approximating the line integral
of the derivative, but comes at a much greater computational
cost. For this reason, we prefer to rely on the gradient-
based approximation for the spatial sensitivity analysis and
complement it with a more robust feature importance analysis,
which numerically quantifies the contribution of each input
feature.

b) Feature Importance: This analysis has the objec-
tive of highlighting the contribution of each predictor to
the performance of the model. Since it is not possible to
selectively remove inputs from a trained DL model, each
feature contribution has to be evaluated by training a dedicated

model. This process can be computationally unfeasible, lead-
ing perturbation-based approximations to be commonly used
instead [17] [39]. Unfortunately, these schemes can lead to
the generation of "unnatural" samples, forcing the model to
operate in OOD regimes [18].

In this work, we take advantage of the limited param-
eter count of the proposed model, which allows for using
independently trained models for each feature permutation.
From these, it is possible to numerically assess the impact
of including (or omitting) each predictor xi from the set of
input features X = {x1, . . . ,xC}.

Firstly, we define the single-feature performance for the ith-
feature as

Ψ sf
i = Ω(f(xi), y), (14)

where Ω is a generic performance metric for the model
prediction ŷ = f(xi) with respect to the reference value y.

We also assess the leave-one-feature-out performance as

Ψ lofo
i = Ω(f(X), y)−Ω(f(X \ {xi}), y), (15)

where X \ {xi} is the subset of all input features excluding
xi.

Finally, we highlight the mean performance variation be-
tween the add-one-in and the leave-one-out cases across all
permutations by computing the Shapley values [40] for each
feature. Instead of an equally weighted average, the Shapley
value of a feature represents the weighted average of that
feature’s marginal contribution across all possible subsets. The
particular weighting scheme follows a combinatorial formula



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 6

derived from cooperative game theory, such that

Ψ shapley
i =

∑
S⊆X\{xi}

wS · [Ω(f(S ∪ {xi}), y)−Ω(f(S), y)] ,

(16)
where wS is the weighting coefficient for the subset S and is
defined as

wS =
|S|! · (|X| − |S| − 1)!

|X|!
, (17)

where |F | for the generic set F indicates its size, and n! is
the factorial of n.

IV. EXPERIMENTS AND RESULTS

In this section, we present extensive numerical analyses
aimed at evaluating the interpretability of the model defined
in III-A, and the role of its six baseline predictors: the
backscatter σHH

0 , the real-valued interferometric coherence
γtot, the volumetric decorrelation factor γvol, the height of
ambiguity hamb, the acquisition raw DEM hacq

dem, and the local
incidence angle θacqlia computed using hacq

dem.
This amounts to a total of 64 unique input feature per-

mutations, for each of which three models are independently
trained, validated and tested, according to the methodology
described in III-B. We also set up additional experiments
wherever a more detailed analysis is required.

A. Kernel Size

Arguably one of the most significant theoretical advantages
of CNN-based methods is the ability to integrate information
about the spatial context into the modeling. The architecture
described in Sec. III-A makes use of 2D kernels, which
mathematically allow the model to access the values of neigh-
boring pixels. To assess the significance of this capability,
we separately train two versions of the proposed models: the
baseline model, which in the hidden layers uses kernels of size
3 × 3 pixels, and a second model, which replaces these with
kernels of size 1×1 pixel. The former architecture results in a
theoretical receptive field of 21× 21 pixels, whereas the latter
has a unitary receptive field. The comparative performance
results for the two models are reported in Tab. I, and highlight
that the omission of contextual information leads to a signifi-
cant loss in accuracy. This can also be observed in the visual
example in Fig. 4, which shows that the 1 × 1-kernel model
fails to predict any substantial spatial pattern in the vegetation
height, as it instead predicts the mean elevation height seen
during training. In contrast to that, the latter 3×3-kernel model
correctly manages to capture the presence of taller vegetation
in the valleys and in presence of water surfaces.

B. Saliency Maps

Having established the benefits of a context-aware model,
we now assess the spatial co-dependencies between the input
features to the model and its outputs, based on the computation
of saliency maps according to Eq. 13. In particular, the analysis
focuses on the effects of each predictor map on a single output
pixel, as the spatial contributions would otherwise overlap and
become impossible to separate. This computation serves to

Fig. 4: Example of the impact of the CNN kernel size. The first
row shows an example of an LVIS-derived CHM (top-left) and
the corresponding TanDEM-X DEM (top-right). The second row
shows the CHM predicted by the 1 × 1-kernel model (center-left)
and the corresponding error (center-right). The third row shows the
CHM predicted by the 3 × 3-kernel model (bottom-left) and the
corresponding error (bottom-right).

TABLE I: Summary of the mean performance results for the 1 ×
1- and the 3 × 3-kernel models averaged across three independent
trainings.

Individual Feature Performance
Experiment ME MAE MAPE RMSE R2

[m] [m] [%] [m] [-]
1× 1 -2.11 5.15 17.31 6.76 0.62
3× 3 -0.41 3.75 13.15 4.96 0.80

emphasize trends in the model decision-making process, as
the interpretation of decisions for individual samples remains
non-linear.

The results for a collection of validation patches are pre-
sented in Fig. 5. For each example, a centered, circular
neighborhood of predictor pixels is considered according to
differential patterns. Of particular interest is the example in
the fifth row, corresponding to a sample of extremely low and
isolated vegetation: a reduction in model sensitivity can be
observed across all predictors, but in particular for hacq

dem.
To better highlight global trends, the average feature

saliency maps and the average of their magnitudes are shown
in Fig. 6. Notably, the absolute values assume Gaussian-like
distributions centered in the output pixel, which suggest a
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Fig. 5: A collection of saliency-map examples and their corresponding canopy height ground-truths. Each of the saliency maps is product
of the partial derivative of the center output pixel, computed with respect to each of the input pixels, and the inputs themselves.

(a) Mean Saliency Maps (b) Mean Absolute Saliency Maps

Fig. 6: The mean (a) and mean absolute (b) feature saliency maps computed across all validation samples.
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Fig. 7: The mean (top) and corresponding mean absolute (bottom)
saliency maps for pixel-wise sum of the γtot and γvol sensitivity
maps.

Fig. 8: The mean saliency maps for the DEM predictor for ascending
(top) and descending (bottom) acquisitions.

rapidly decaying relevance of the predictors as the radial
distance to the estimated pixel increases. This central area
of highest sensitivity defines the effective receptive field of
the model [41], namely the spatial context that the model
considers for its prediction. The saliency maps for γtot and
γvol show similar sensitivity patterns, but with opposite signs.
This is made more evident by their pixel-wise summation:
Fig. 7 shows the averaged result across all validation samples
and highlights how the energy of the resulting saliency map is
focused on the location of the predicted output pixel, with a
net inversely proportional relationship. This complementarity
between the saliency maps for γtot and γvol suggests that
the model might be relying on a direct comparison between
the two features to produce a more robust prediction. The
saliency map for hacq

dem (Fig. 6) consists of parallel segments
of increased sensitivity, arranged in an alternating pattern
reminiscent of 2D Gabor filters, which are typically used
in image processing to detect directional frequency contents
and are hypothesized to be at the heart of the mammalian
vision system [42]. This suggests a directional sensitivity to
vertically occurring changes in hacq

dem. Given the small context
window, any detected variation in the DEM is necessarily a
high-frequency spatial component, thus excluding any slow-
varying topographic features. Such highly varying patterns
might instead be connected to transition areas between forested
and non-forested areas, or to significant variations in mean-
phase center height over forested areas.

Interestingly, the preference for the North-South direction is
found across all three independent training runs (i.e. all models
find the same relationship), suggesting a deeper connection
with the input data. We evaluate a potential dependency on the

(a) Ascending

(b) Descending

Fig. 9: The mean (a) and mean absolute (b) feature saliency maps
computed across all validation samples. The results have been linearly
upsampled to better highlight their relationships.

near-polar orbit direction and the side-looking acquisition ge-
ometry of the TanDEM-X mission by computing the saliency
maps for ascending and descending acquisitions, separately.
Indeed, the results in Fig. 8 highlight rotations in the patterns
- counterclockwise for the ascending pattern, and clockwise for
the descending one - that are compatible with the estimated
off-axis rotations of −11.3◦ and +11.3◦ for the TanDEM-X
ascending and descending orbits, respectively.

A left-right symmetry can also be found in the remaining
saliency maps, as it can be observed particularly clearly in the
bilinearly upscaled patterns shown in Fig. 9.

C. Baseline Feature Importance Analysis

To capture the relevance of each predictor, three perfor-
mance evaluations are presented according to the importance
analysis strategies discussed in Sec. III-C. All evaluation
results are numerically detailed in the appendix (Sec. VI).

a) Single-Feature Importance: The first experiment, re-
ported in Fig. 10, evaluates the information content indepen-
dently carried by each single feature.

It is possible to observe that γtot and γvol alone perform
sensibly better than σHH

0 : the scatterplots in Fig. 11 sug-
gest that the coherence-related features are more effective at
separating vegetated from non-vegetated samples, while σHH

0

better manages to distinguish between different canopy height
ranges.
hacq
dem significantly outperforms all other predictors, while

the local incidence angle map θacqlia performs the second best,
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Fig. 10: Distribution of the performance metrics for each model trained on only one of the six baseline predictors.

(a) σHH
0 (b) γtot

(c) γvol (d) hacq
dem

(e) θacqlia (f) hamb

Fig. 11: Scatterplots for each of the models trained on only one of
the six baseline predictors.

possibly due to its direct dependence on hacq
dem. As mentioned,

hacq
dem is positively biased and results in spatially varying

patterns in the presence of vegetation, which could be good
indicators of canopy height.

Finally, hamb performs the worst, given that it does not hold
any information about the target: Fig. 11 (f) shows that the
model learns to predict only a narrow range of forest height
values corresponding to the largest modality found in the

TABLE II: The shapley values for each of the model’s pre-
dictors, expressed for different performance metrics.

Shapley Values
Experiment ∆ME ∆MAE ∆MAPE ∆RMSE ∆R2

[m] [m] [%] [m] [-]
σHH
0 1.67 -1.52 -6.90 -1.60 0.24
γtot 1.32 -1.50 -8.37 -1.60 0.24
γvol 1.51 -1.51 -7.99 -1.61 0.24
hamb 0.63 -0.50 -1.09 -0.43 0.06
hacq
dem 1.16 -1.89 -11.91 -2.09 0.29
θacqlia 1.44 -1.49 -7.79 -1.59 0.24

training set. This is expected, as predicting the most occurring
value is the best option to minimize training loss in the absence
of target information.

b) Leave-One-Feature-Out Performance Loss: The con-
tribution of individual features to the baseline model is as-
sessed through a leave-one-feature-out analysis according to
Eq. 15. The resulting performance losses are reported in Fig.
12.

The hacq
dem remains by far the most impactful feature, as ev-

idenced by the significant performance loss across all metrics
and especially for the MAPE one.

In contrast, the impact of each coherence feature is shown
to become negligible and suggests a fundamental redundancy
in the information provided by γtot and γvol. We remark
that γvol is estimated from γtot by compensating the latter
for additional decorrelation sources, such as γquant and γsnr.
γtot still provides a sensible improvement in terms of MAPE,
which corresponds to an improvement in the estimation of
shorter tree stands.

Also of interest is the insignificant impact on the perfor-
mance of hamb, as it appears to become redundant in the
presence of other predictors.

c) Shapley Values: To estimate the overall importance
of each feature, we compute their Shapley values according
to Eq. 16. Each resulting value represents the fractional
contribution of that specific predictor to the total performance
when going from a model based on an empty set of features
to that with the complete set of features. The corresponding
performance results for each feature are summarized in Tab.
II. As it can be seen, hacq

dem remains by far the most relevant
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Fig. 12: The performance metrics for the leave-one-feature-out analysis. Each model is trained on all-but-one of the six baseline predictors.

feature to explain the model performance, with σHH
0 , γtot,

γvol and θacqlia achieving very similar relevance with respect
to each other. The only metric with an interesting behavior
is the MAPE, which sees σHH

0 performing worse and γtot
performing sensibly better.

On the basis of these results, we note that the assumption of
independence between all predictors is not satisfied. Therefore,
more detailed analyses are required to understand their specific
role.

D. Interferometric Phase Importance Analysis

Given the particular relevance of hacq
dem, this section presents

more experimental results focused on the role of the acquisi-
tion DEM and its precursor, the interferometric phase ϕacq.
As discussed in Sec. II-B, the use of the raw acquisition
DEM stems from previous analyses in [35] and [3], which
highlighted the importance of temporal consistency between
all predictors.

a) Phase Unwrapping: An interesting aspect to consider
is the impact of the phase unwrapping process on the regres-
sion problem. It is reasonable to assume that the conversion
of a relative (i.e., ambiguous) height measurement into an
absolute one might provide relevant contextual information to
the model (e.g., about different climatological and elevation-
dependent changes in the phenology).

To test this assumption, we first convert hacq
dem to the absolute

phase and then wrap it to once again represent the topography
in terms of an ambiguous phase term. For this, we consider
two different strategies: wrapping it with a period of hamb

and wrapping it with a globally defined constant period (i.e.,
hconst
amb = 100m). The first strategy allows one to revert

the DEM back to the geocoded interferometric phase ϕamb
acq

(excluding potential changes introduced by the unwrapping
process itself), while the second one is selected to potentially
decouple the model’s regression performance from the acquisi-
tion geometry through the definition of ϕconst

acq . An example for
hacq
dem and its corresponding ϕamb

acq and ϕconst
acq representations

is shown in Fig. 13.

It is noted that, by definition, phase jumps are encountered
when moving between two adjacent phase cycles. Therefore,
each of the aforementioned wrapped phase features will be
also expressed in terms of a {sinϕacq, cosϕacq} pair, which
removes these jumps and preserves the unambiguous direction
of phase growth. The results for each of the four experiments
are reported in Fig. 14.

Compared to the baseline result, a small performance
degradation can be observed for the {sinϕconst

acq , cosϕconst
acq }

pair. This outcome meets the expectation that the wrapped
phase should not contain additional information compared to
hacq
dem, but loses the information about the absolute topographic

elevation.
Interestingly, this outcome is not repeated for ϕamb

acq , as
sensible performance gains can be observed over the base-
line, especially for the {sinϕamb

acq , cosϕamb
acq } pair. A possible

explanation for the improved performance could lie in the
fact that a period-correct wrapping of hacq

dem would, by defi-
nition, eliminate any phase unwrapping errors, which would
survive for ϕconst

acq . The comparatively poor performance for
{sinϕconst

acq , cosϕconst
acq } could also support this thesis: sudden

jumps in the predictors are not expected, and when phase
unwrapping errors occur, these could lead to unexpected
predictions. This might not be an issue for the ϕconst

acq case,
which naturally includes phase jumps between contiguous
phase cycles, and might thus offer some intrinsic robustness.
Finally, we remark that, while the {sinϕamb

acq , cosϕamb
acq } pair

represents a robust choice against processing errors, it does
not provide additional information on the regression problem.

b) Mean Phase Center Height: The performance results
in Sec. IV-C have evidenced the primary role of the inter-
ferometric phase information, especially in terms of MAPE.
It has also been shown that this role is preserved even
when the interferometric phase information is presented in its
wrapped state, as the absolute elevation appears to not hold
any particular value over the AfriSAR sites. This behavior
suggests the crucial role of the phase information in correctly
distinguishing between forested and non-forested areas. A
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Fig. 13: An example of a TanDEM-X-derived DEM (left), and the corresponding phases obtain by wrapping the DEM with an acquisition
dependent period of hamb (center), and with an acquisition independent period of hconst

amb = 100 (right).

Fig. 14: The comparison of the performance metrics for the interferometric phase experiment. Each model uses all of the baseline predictors,
but evaluates different means of representing the interferometric phase information.

possible explanation for this behavior might reside in the
significant local variability of the mean phase center height
over forested areas, especially compared to the relatively slow
varying behavior of the underlying topography. To test this
idea, the LiDAR-derived DTM hdtm, produced in the context
of the 2016 AfriSAR campaign, is investigated as a possible
drop-in replacement for hacq

dem. Furthermore, also the hacq
dem-

derived local incidence angle map (θacqlia ) is compared to
that derived from hdtm (θdtmlia ), as to completely remove any
dependencies on the mean phase center variability. As it can
be seen in Fig. 15, there are clear differences between the
distributions for hacq

dem and θacqlia , with those for hdtm and θdtmlia .
It is also possible to visually observe the high local variability
in hacq

dem, which effectively manifests itself as a noise-like
behavior that is propagated to θacqlia . Finally, the distributions
for hdsm and hacq

dem highlight a relative elevation offset, which
corresponds to the penetration bias of the X-band radar wave
into the canopy.

Looking at the performance metrics reported in Fig. 16,
the results for the individual predictors confirm that no in-
formation about forest height can be recovered from hdtm

or θdtmlia , which perform significantly worse on their own
than their InSAR counterparts. This is also confirmed by the
results for the complete predictor set, for which the models
replacing hacq

dem with hdtm maintain similar results in terms

of RMSE and R2, but perform measurably worse in terms of
MAPE. This behavior reflects a greater difficulty in estimating
short vegetation, providing another clear indication of the
relevance of the interferometric phase (and by extension hacq

dem)
in providing a means to separate short vegetation from open
terrain.

Interestingly, replacing θacqlia with θdtmlia leads to a significant
improvement in performance over the baseline. As can be
seen in Fig. 15, relying on hacq

dem for the local incidence angle
computation introduces a lot of noise that is related to the
incorrect estimation of the normal to the surface. This evidence
suggests that selecting the correct DEM is critical for optimal
SAR pre-processing (e.g., geometric and radiometric terrain
correction, shadow/layover estimation, local incidence angle
computation) [43].

Finally, by combining the information provided by hacq
dem and

hdtm it is possible to further simplify the inversion problem,
effectively providing a (measured) lower boundary to the
estimated canopy height.

E. Interferometric Coherence Importance Analysis

This section focuses on the relevance of γtot, γvol and hamb,
on their co-dependencies and potential redundancies. The
performance results presented in Fig. 17 depict the relationship
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Fig. 15: The first row shows an example of LVIS-derived DSM (left)
and CHM (right). The second row shows the TanDEM-X-derived
DEM (left) and the corresponding LIA (right). The third row shows
the LVIS-derived DTM (left) and the corresponding LIA (right). The
fourth row shows the distributions for the LVIS-derived DSM and
DTM, and the TanDEM-X derived DEM (left), and the distribution
for the LIA derived from the DTM and the DEM (right).

between these three features in absence of other predictors. It
can be seen that γtot and γvol lead to similar results, with
γtot leading to measurably better MAPE scores, while models
using γvol perform sensibly better in terms of RMSE and
R2. As expected, the addition of hamb provides the necessary
contextual information, helping both features to better separate
ambiguous vegetation contributions from those caused by the
interferometric baseline. The combination of γtot and γvol
leads to an even more notable improvement, which is further
enhanced by the addition of hamb. From the results in Fig.
12, it is possible to observe that the information provided by
either γtot, γvol and hamb becomes redundant in the presence
of the remaining predictors.

V. DISCUSSION

The experiments presented in Sec. IV offer detailed insights
into the inner workings of the proposed deep learning-based
framework for the regression of forest height from spaceborne
InSAR data. In particular, the developed fully-convolutional

baseline architecture models the canopy height from a set
of SAR, InSAR and ancillary features, all derived from only
one single-pass TanDEM-X SAR acquisition. The relationship
between these physics-aware predictors and the forest height
variable is inferred from the labeled training data, by teach-
ing the model to sequentially capture increasingly complex
patterns.

By design, the prediction for a single pixel is based on the
information context that spans across all predictors and over
a local spatial neighborhood of pixels. The experiments on
the CNN’s kernel size, presented in Sec. IV-A, measured the
contribution offered by this spatial context. The results for the
3× 3-kernel model showcased improvements over the 1× 1-
kernel model of 80.6% in ME, of 36.3% in RMSE, of 24.0%
in MAPE, and of 29.0% in R2, respectively, emphasizing the
key relevance of the spatial context.

In Sec. IV-B we assessed the nature of these spatial patterns
through the computation of gradient-based saliency maps,
indicating the sensitivity of the model’s prediction to each
input pixel. The results show that the model’s attention to the
input has a radial symmetry that rapidly decays to zero beyond
a distance of 100 m from the predicted pixel, suggesting that
a relatively small contextual window might be sufficient to
correctly inform the model. This could represent a limit to the
usefulness of larger models (e.g., U-Nets and ResNets) or of
general purpose architectures (e.g., multi-layer perceptrons and
visual transformers). We remark that this observation depends
on the specific data source, the observed phenology and the
pixel spacing used in this study, and it might not apply for
different contexts.

In the analysis in Sec. IV-B, we observed that the saliency
patterns for the inputs to the baseline model are related to
the SAR acquisition geometry, since left-right symmetries
emerged for the saliency maps obtained for ascending and
descending acquisitions, separately. Furthermore, the saliency
map for hacq

dem shows a clear sensitivity to changes occurring
along the sensor flight direction. The model is arguably
capable of correctly inferring the differences in acquisition
geometries related to ascending and descending orbits and it
learns to model the spatial relationships within the predictors
accordingly. The independence of deep learning models from
the SAR orbit direction was already observed in [35], but no
empirical evidence had been found up to this point.

In Sec. IV-C we presented an extensive feature importance
analysis to infer the direct influence of each predictor, as well
as of any potential co-dependencies, on the canopy height
regression performance.

Across all tested input permutations, the interferometric
features (γtot, γvol, h

acq
dem) form the most informative set of

predictors, with σHH
0 and θacqlia remaining extremely relevant,

and hamb resulting in only limited gains. More in detail, the
differences in feature importance found between the single-
feature and the leave-one-feature-out analyses suggest that
some of the features might offer relevant information to
the model when the number of predictors is limited, but
become increasingly obsolete when complementary sources
of information are added. A relevant example is the apparent
redundancy introduced by the two coherence terms γtot and
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Fig. 16: The comparison of the performance metrics for the DTM experiment. The information content of the LVIS-derived hdtm and its
corresponding θdtmlia , is compared against that of the TanDEM-X-derived hacq

dem and its corresponding θacqlia .

Fig. 17: The comparison of the performance metrics for the InSAR coherence experiment. The analysis highlights the co-dependencies
between γtot, γvol and hamb.

γvol, since it follows from Eq. 3 that γvol is a factor of
γtot. The results in Fig. 12 appear to imply that either
could be removed without significant alterations to the overall
performance, while the results reported in Tab. III suggest that
their combination offers improvements in either a feature indi-
vidually whenever one among σHH

0 , hacq
dem, or θacqlia is missing.

Surprisingly, this observation holds even if hamb is present,
but it falls short when σHH

0 is introduced alongside hamb. In
general, σHH

0 appears to provide a great complementary source
of information for each of the interferometry-derived features,
so that their combination might lead to a better separation of
different acquisition characteristics and phenological contexts.
As reported in Tab. IV, we additionally evaluated the role
of γsnr as a potential replacement for γvol (in the presence

of γtot), and as an explicit contextualization for the range-
dependent antenna pattern. We found that in practice γsnr fails
to provide any useful information to the model, and rather
leads to a slight reduction in performance.

The interferometric phase (expressed in terms of hacq
dem)

represents by far the most informative feature, leading to the
best performance scores, both individually and in combination
with other predictors. In particular, there is strong evidence
that hacq

dem is especially relevant for separating between the
absence and the presence of low vegetation, as evidenced by
the large gains in the MAPE as well as the scatterplots in Fig.
11. The specific mechanism by which this is achieved is made
evident by the corresponding saliency map shown in Fig. 8:
The model appears to be sensitive to (orbit-aligned) differential
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patterns in the hacq
dem, which are related to the high variability in

the measured mean phase center height found for volumetric
scatterers. This is indirectly also confirmed by the results
presented in Fig. 16, where a drop-in replacement of hacq

dem

with hdtm (and consequently of θacqlia with θdtmlia ) produces
similar RMSE and R2 scores, but results in a significantly
worse MAPE, implying that the prediction of low vegetation
is disproportionally affected. The results presented in Fig. 16
also showed that replacing θacqlia with θdtmlia (while keeping
hacq
dem) can measurably improve performance. This aspect can

again be explained by the large variability in mean phase
center heights measured over forested areas, as these lead
to an incorrect estimation of the normal to the topographic
surface and, ultimately, to an incorrect computation of the
local incidence angle value. Hence, adopting the ALS-derived
hdtm as a proxy for the real topography better captures the
real acquisition geometry of the systems, leading to a less
ambiguous interpretation of the measured features. Finally, we
also showed that the combination of hacq

dem, hdtm and θdtmlia

represents the upper performance limit of what is achievable
(with the proposed regression framework) with an injection
of privileged information. More so, the remaining prediction
errors are evidence of further inconsistencies in the inversion
problem, hinting at residual modeling ambiguities (i.e. missing
information) and residual noise contributions in the satellite
and the reference data measurements.

VI. CONCLUSIONS

In this work, we presented an XAI perspective on the inner
workings of a CNN-based model for forest height regres-
sion from TanDEM-X single-pass InSAR data. The proposed
analyses focused on the role of the model’s predictors and
their spatial context. We computed gradient-based saliency
maps to assess the relationship between each input feature and
their spatial context with the predicted outputs, finding strong
evidence in favor of the model being capable of recognizing
the orbit and look direction of the InSAR instrument. A
detailed feature importance analysis, comprising more than
300 independently trained models, allowed us to determine
the role of each predictor and to discover new insights into the
physics of the problem. We found the interferometric features
to be the main performance drivers of the model, with the
interferometric phase of particular relevance, especially for
the correct discrimination of short or very sparse vegetation.
The use of the X-band TanDEM-X raw DEM led to errors
in the calculation of local incidence angle maps, since the
measured mean phase center height is highly variable over
forested areas, yielding an incorrect estimation of the surface
normal direction and of the returned energy. Additionally, we
showed that the joint use of the interferometric coherence and
the volume decorrelation factor improves performance in the
absence of further predictors, but becomes redundant when
the full feature set is considered. The backscatter information
also becomes relevant in combination with the interferometric
features, offering a wider degree of separability between the
forest height ranges.

In future work, we would like to further analyze the hidden
projection spaces found by the model, relying on linear

or distance-preserving approximations to help improve their
interpretations. We are also interested in better understanding
the impact of distribution shifts or out-of-distribution samples
on the model’s predictions, improving the understanding of
the generalization capabilities of these algorithms. Of interest
is also the inclusion of ancillary environmental factors into the
analyses, such as time of day, day of year, and meteorological
conditions, to assess if it is possible to infer these aspects
from the predictors alone or whether the information has to
be provided in addition for a correct estimate.

APPENDIX: ADDITIONAL TABLES

The following section presents the performance results for
each predictor permutation considered in this work, each
representing the average across three independent training,
validation and test runs. In particular, Tab III summarizes the
results for the feature importance analysis for the six baseline
predictors, and Tab IV lists the results for the interferometric
features.
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TABLE III: The performance results for the feature importance
analysis, consisting of all 64 model permutations obtainable
from the baseline predictor set.

Appendix
Experiment ME MAE MAPE RMSE R2

[m] [m] [%] [m] [-]
∅ -8.17 12.18 57.17 13.90 -0.53

σHH
0 -0.86 5.92 26.87 7.86 0.49
γtot -1.85 5.80 21.26 7.65 0.51
γvol -1.22 5.80 23.12 7.61 0.52
hamb -4.27 9.89 55.04 12.24 -0.24
hacq
dem -1.34 5.06 17.94 6.54 0.64
θacqlia -1.50 5.51 21.22 7.24 0.56

σHH
0 ,γtot -0.37 4.73 19.86 6.14 0.69

σHH
0 ,hacq

dem -0.65 4.30 14.93 5.64 0.74
σHH
0 ,hamb -1.42 5.92 24.80 7.90 0.48
σHH
0 ,θacqlia 0.03 4.80 19.50 6.28 0.67

σHH
0 ,γvol -0.29 4.76 19.88 6.19 0.68
γtot,γvol 0.04 4.71 18.93 6.13 0.69
γtot,hamb -1.15 5.24 19.49 6.89 0.60
γtot,hacq

dem -1.02 4.67 16.01 6.15 0.69
γtot,θacqlia -0.35 4.77 18.47 6.22 0.68
γvol,θacqlia -0.26 4.80 19.33 6.26 0.67
γvol,hamb -0.64 5.19 19.33 6.83 0.61
γvol,hacq

dem -0.85 4.53 15.60 5.96 0.70
hamb,hacq

dem -0.99 4.78 16.84 6.26 0.67
hamb,θacqlia -1.64 5.42 20.87 7.10 0.58
hacq
dem,θacqlia -0.77 4.63 16.63 6.07 0.69

σHH
0 ,γvol,hamb -0.33 4.41 16.95 5.73 0.73

σHH
0 ,hamb,hacq

dem -0.38 4.29 14.99 5.64 0.74
σHH
0 ,γvol,θacqlia 0.17 4.50 19.70 5.81 0.72

σHH
0 ,γtot,θacqlia 0.36 4.45 19.64 5.73 0.73

σHH
0 ,γvol,hacq

dem -0.32 3.97 13.83 5.23 0.77
σHH
0 ,γtot,hacq

dem -0.61 4.06 14.01 5.31 0.77
σHH
0 ,γtot,γvol -0.07 4.56 19.51 5.92 0.71

σHH
0 ,hacq

dem,θacqlia -0.37 4.14 14.48 5.44 0.75
σHH
0 ,γtot,hamb 0.01 4.40 17.43 5.70 0.73

σHH
0 ,hamb,θacqlia 0.16 4.85 22.23 6.30 0.67
γtot,hacq

dem,θacqlia -0.37 4.37 15.40 5.70 0.73
γtot,γvol,hamb -0.21 4.45 17.17 5.80 0.72
γtot,hamb,θacqlia -0.62 4.67 18.24 6.08 0.69
γtot,hamb,hacq

dem -1.38 4.60 15.64 6.00 0.70
γtot,γvol,hacq

dem -0.42 4.06 14.00 5.36 0.76
γtot,γvol,θacqlia -0.02 4.49 18.94 5.80 0.72
γvol,hacq

dem,θacqlia -0.50 4.30 15.06 5.66 0.73
γvol,hamb,θacqlia -0.61 4.61 17.55 6.02 0.70
γvol,hamb,hacq

dem -0.99 4.41 15.28 5.80 0.72
hamb,hacq

dem,θacqlia -0.75 4.65 16.39 6.09 0.69
σHH
0 ,γtot,hamb,θacqlia -0.09 4.29 17.34 5.54 0.75
σHH
0 ,γtot,γvol,θacqlia 0.60 4.45 20.39 5.75 0.72

σHH
0 ,γtot,hacq

dem,θacqlia -0.43 3.84 13.16 5.06 0.79
σHH
0 ,γvol,hamb,θacqlia 0.02 4.25 17.34 5.50 0.75

σHH
0 ,γvol,hamb,hacq

dem -0.30 3.87 13.31 5.10 0.78
σHH
0 ,γtot,γvol,hacq

dem -0.32 3.90 13.45 5.14 0.78
σHH
0 ,hamb,hacq
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