Beck, Fabian und Horsch, Julius und Albu-Schäffer, Alin Olimpiu (2026) Optimal Orbit Stabilization by Approximating Lagrangian Submanifolds with Neural Networks. In: 64th IEEE Conference on Decision and Control, CDC 2025. IEEE. 64th IEEE Conference on Decision and Control, 2025-12-09 - 2025-12-12, Rio de Janeiro, Brazil. doi: 10.1109/CDC57313.2025.11312785. ISSN 0743-1546.
|
PDF
- Nur DLR-intern zugänglich
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/11312785
Kurzfassung
In this work, we propose a novel approach to periodic orbit stabilization using the periodic Linear Quadratic Regulator (LQR) framework. While conventional methods rely on transverse coordinates for control design and controller implementation, our approach transforms the optimal feedback back to the original coordinates, enabling seamless application. By leveraging the symplectic geometric structure of the control problem, we approximate the value function, which defines the Lagrangian submanifold representing the optimal feedback in a coordinate independent way, using a neural network. This eliminates the need for explicit online transverse coordinate computation. The method is demonstrated on two nonlinear systems in two and five dimensions.
| elib-URL des Eintrags: | https://elib.dlr.de/221564/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Optimal Orbit Stabilization by Approximating Lagrangian Submanifolds with Neural Networks | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 12 Januar 2026 | ||||||||||||||||
| Erschienen in: | 64th IEEE Conference on Decision and Control, CDC 2025 | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Nein | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.1109/CDC57313.2025.11312785 | ||||||||||||||||
| Verlag: | IEEE | ||||||||||||||||
| ISSN: | 0743-1546 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Optimal Control, Stabilization, Periodic Orbits, Periodic LQR | ||||||||||||||||
| Veranstaltungstitel: | 64th IEEE Conference on Decision and Control | ||||||||||||||||
| Veranstaltungsort: | Rio de Janeiro, Brazil | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 9 Dezember 2025 | ||||||||||||||||
| Veranstaltungsende: | 12 Dezember 2025 | ||||||||||||||||
| Veranstalter : | IEEE | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Robotik | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Laufroboter/Lokomotion [RO] | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Analyse und Regelung komplexer Robotersysteme Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||
| Hinterlegt von: | Beck, Fabian | ||||||||||||||||
| Hinterlegt am: | 13 Jan 2026 12:19 | ||||||||||||||||
| Letzte Änderung: | 13 Jan 2026 12:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags