Mhatre, Aditi und Merola, Salvatore und Koschlik, Ann-Kathrin und Rodeck, Rebecca und Wende, Gerko (2025) Deep-Learning-based Dent Detection of Aircraft Surfaces using Synthetic Data. 10th CEAS Aerospace Europe Conference, 28th AIDAA International Congress, 2025-12-01 - 2025-12-04, Turin, Italy. (im Druck)
|
PDF
- Nur DLR-intern zugänglich
9MB |
Kurzfassung
Detecting and localizing dents on aircraft surfaces is crucial for maintaining their structural integrity. However, this task can be challenging for humans as dents are not very prominent to the naked eye and require the assistance of light reflections to reveal the damages across the surface. Latest state-of-the-art technologies such as lasers or cameras digitize this step, however the work load is shifted in identifying the dents to the virtual image. The integration of deep-learning methodologies can help automate dent detection. This study compares two object detection architectures: You Look Only Once (YOLOv11) and Real-Time DETection TRansformer (RT-DETR) for dent detection. A high quality dent dataset is prepared, consisting of real and synthetic images of common long- and mid-range aircraft fuselages, to train and test the models. The results indicate that YOLOv11 marginally outperforms RT-DETR in detecting dents with a mean accuracy precision (mAP50) score of 0.66 against the mAP50 value of 0.57 for RT-DETR.
| elib-URL des Eintrags: | https://elib.dlr.de/221397/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
| Titel: | Deep-Learning-based Dent Detection of Aircraft Surfaces using Synthetic Data | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 2025 | ||||||||||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| Status: | im Druck | ||||||||||||||||||||||||
| Stichwörter: | Aircraft Surface Inspection, Dent Detection, Deep Learning, Aircraft Maintenance, Visual Check, Generative AI | ||||||||||||||||||||||||
| Veranstaltungstitel: | 10th CEAS Aerospace Europe Conference, 28th AIDAA International Congress | ||||||||||||||||||||||||
| Veranstaltungsort: | Turin, Italy | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 1 Dezember 2025 | ||||||||||||||||||||||||
| Veranstaltungsende: | 4 Dezember 2025 | ||||||||||||||||||||||||
| Veranstalter : | Council of European Aerospace Societies (CEAS), Italian Association of Aeronautics and Astronautics (AIDAA) | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | D - Kurzstudien [KIZ] | ||||||||||||||||||||||||
| Standort: | Hamburg | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Instandhaltung und Modifikation Institut für Instandhaltung und Modifikation > Wartungs- und Reparaturtechnologien Institut für Instandhaltung und Modifikation > Prozessoptimierung und Digitalisierung | ||||||||||||||||||||||||
| Hinterlegt von: | Mhatre, Aditi | ||||||||||||||||||||||||
| Hinterlegt am: | 18 Dez 2025 16:17 | ||||||||||||||||||||||||
| Letzte Änderung: | 18 Dez 2025 16:17 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags