elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

On the Strategy of Exploring Spatio-Temporal Information from Earth Observation Data for Crop Yield Prediction

Ofori-Ampofo, Stella und Kuzu, Ridvan Salih und Schauer, Peter und Willberg, Martin und Höhl, Adrian und Zhu, Xiao Xiang (2025) On the Strategy of Exploring Spatio-Temporal Information from Earth Observation Data for Crop Yield Prediction. Smart Agricultural Technology, 12, Seite 101540. Elsevier. doi: 10.1016/j.atech.2025.101540. ISSN 2772-3755.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
9MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S2772375525007713?via%3Dihub

Kurzfassung

Crop yield information plays a pivotal role in ensuring food security. Advances in Earth Observation technology and the availability of historical yield records have promoted the use of machine learning for yield prediction. Significant research efforts have been made in this direction, encompassing varying choices of yield determinants and particularly how spatial and temporal information are encoded. However, these efforts are often conducted under diverse experimental setups, complicating their inter-comparisons. In this paper, we present our findings on multiple strategies for encoding spatial-spectral information at the county level through averaging pixel values, pixel sampling, and image histograms alongside approaches for encoding temporal information, including recurrent neural networks, temporal convolutions, and attention mechanisms. Our numerical results indicate that predicting crop yield solely using time series data can be effective, even without spatial information, and classical machine learning methods remain competitive in this application. Surface reflectance information emerges as a critical predictor in the absence of weather and spectral indices. While machine learning models typically require an extensive sample size, our findings suggest that reliance on long-term historical data may hinder models' ability to accurately reflect current conditions. This study provides valuable insights into feature and model selection for county-level yield prediction, highlighting the interplay between data structure, model complexity, and predictive performance.

elib-URL des Eintrags:https://elib.dlr.de/221113/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:The work of S. Ofori-Ampofo was funded by the Munich Aerospace e.V. scholarship. The work of A. Höhl was funded by the project ML4Earth by the German Federal Ministry for Economic Affairs and Climate Action under grant number 50EE2201C.
Titel:On the Strategy of Exploring Spatio-Temporal Information from Earth Observation Data for Crop Yield Prediction
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ofori-Ampofo, StellaTU MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kuzu, Ridvan SalihRidvan.Kuzu (at) dlr.dehttps://orcid.org/0000-0002-1816-181X201890736
Schauer, PeterIABGNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Willberg, MartinIABGNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Höhl, Adrianadrian.hoehl (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:1 Dezember 2025
Erschienen in:Smart Agricultural Technology
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:12
DOI:10.1016/j.atech.2025.101540
Seitenbereich:Seite 101540
Verlag:Elsevier
ISSN:2772-3755
Status:veröffentlicht
Stichwörter:Crop yield, Remote sensing, Machine learning, Forecasting, Time series
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung, R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Institut für Methodik der Fernerkundung
Hinterlegt von: Kuzu, Dr. Ridvan Salih
Hinterlegt am:09 Jan 2026 10:13
Letzte Änderung:09 Jan 2026 10:13

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.