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ABSTRACT

Crop yield information plays a pivotal role in ensuring food security. Advances in Earth Observation technology
and the availability of historical yield records have promoted the use of machine learning for yield prediction.
Significant research efforts have been made in this direction, encompassing varying choices of yield determinants
and particularly how spatial and temporal information are encoded. However, these efforts are often conducted
under diverse experimental setups, complicating their inter-comparisons. In this paper, we present our findings
on multiple strategies for encoding spatial-spectral information at the county level through averaging pixel
values, pixel sampling, and image histograms alongside approaches for encoding temporal information, including
recurrent neural networks, temporal convolutions, and attention mechanisms. Our numerical results indicate that
predicting crop yield solely using time series data can be effective, even without spatial information, and classical
machine learning methods remain competitive in this application. Surface reflectance information emerges as a
critical predictor in the absence of weather and spectral indices. While machine learning models typically require
an extensive sample size, our findings suggest that reliance on long-term historical data may hinder models’ ability
to accurately reflect current conditions. This study provides valuable insights into feature and model selection for
county-level yield prediction, highlighting the interplay between data structure, model complexity, and predictive
performance.

1. Introduction

Agriculture production is expected to more than double to meet

severely impacts agricultural revenues [7,8]. These factors collectively
reduce crop production and revenue, further constraining investments
in subsequent planting seasons [9].

the pressure from growing food demand [1]. While interventions like
genetic modification, cropping intensification and mechanization have
transformed the agriculture sector, the desire to satisfy a food-insecure
population remains challenging under the threats of erratic climate con-
ditions, economic slowdowns and conflicts [2]. Climate change, particu-
larly rising temperatures, adversely affects crop growth [3-5]. Extreme
weather conditions have, in some cases, accelerated insect populations
and activity, leading to increased crop consumption and yield loss [6].
Conflicts in various regions further exacerbate these challenges by re-
stricting access to farmlands and disrupting harvesting activities, which
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Researchers have applied various environmental and weather fac-
tors from satellite data to understand crop conditions and to estimate
crop yield. On the one hand, a generalization of the widely used ap-
proaches includes process-based models which simulate crop growth
under various environmental and management conditions [10,11]. On
the other hand, data-driven or empirical approaches, such as statistical
and machine learning (ML) models, approximate a function that corre-
lates productivity drivers to yield. The former requires expert knowledge
of crop biophysical processes and can present a high level of uncertainty
due to excessive parameterization [12]. As such, data-driven approaches
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have become more attractive, and the advances in ML methods coupled
with the availability of satellite data facilitate the exploitation of spatial
and temporal information.

The capacity of ML to predict crop yields has been demonstrated
in several studies and for varying prediction units [13-16]. A predic-
tion unit refers to the geographic boundary, such as a pixel, farm, or
administrative region, at which crop yield data is collected or aggre-
gated. At large prediction units like county level or districts, encoding
spatial information presents unique challenges due to variations in crop
conditions across different ecological zones and the irregular nature of
administrative boundaries. Moreover, the inherent phenological char-
acteristics of crops incite the use of ML models designed to efficiently
exploit temporal information. Despite methodological advances in ML
for yield prediction, there is limited insight into the trade-offs between
the numerous ways of handling spatial and temporal information and
their respective impact on prediction performance. Addressing this gap
is essential for informing data collation efforts and guiding model se-
lection, particularly when developing large-scale prediction systems in
resource-constrained environments [17]. Relying only on temporal in-
formation to predict yield is prevalent [13,18,19], but the approaches
used are far from exhaustive, leaving room for improvement. Inter-study
comparisons are also challenging, as each operates under different ex-
perimental setups, including feature combinations and geographical and
temporal scopes.

In this paper, we present a first comprehensive comparison of exist-
ing spatial and temporal encoding techniques for corn yield prediction
in the USA. We build upon current methods by introducing innova-
tive ideas from crop classification studies, particularly using pixel-set
encoding [20], to complement the widely adopted mean-averaged and
histogram-based transformations prevalent in yield prediction research
[16,21,22]. For temporal feature extraction, we explore state-of-the-art
temporal encoding techniques, including multi-scale residual networks
(MSResNet [23] and InceptionTime [24]) and a multi-headed temporal
attention encoder [25] in addition to standard recurrent neural networks
(RNN) and single-kernel convolution [26,27]. Our work not only pro-
vides a rigorous evaluation of spatial and temporal encoding strategies
but also delivers practical insights into their trade-offs and contributions
to yield prediction accuracy. Furthermore, leveraging the MSResNet
architecture, we conduct an in-depth analysis of key factors affecting
model performance, such as sample size, feature combinations, and in-
season yield forecast. In this context, we also examine the role of prior-
year observations: an often overlooked yet informative addition [28].
These immediate preceding values may implicitly capture recent agro-
nomic practices, management conditions, or persistent environmental
effects, which in turn can enhance model generalization and predictive
accuracy. By addressing these aspects, we aim to inform future research
and support the development of robust, scalable yield prediction mod-
els applicable to both data-rich and resource-constrained environments.
To support this analysis, we compiled a multi-source dataset consisting
of yearly county-level corn yield statistics, gridded 8-day MODIS sur-
face reflectance and derived spectral indices, as well as gridded daily
weather variables from Daymet.

The remainder of the paper is organized as follows: Section 2 reviews
previous work on machine learning techniques for crop yield prediction.
Section 3 describes the methods used to encode spatial and temporal
information. Sections 4 and 5 introduce the dataset and outline the ex-
perimental setup respectively. Finally, Section 6 presents and discusses
the results of our study.

2. Related work

Crop yield is influenced by a complex interplay of biotic and abiotic
factors that vary across agro-ecological zones. Yield prediction models
predominantly relied on meteorological variables such as precipitation
and temperature, which are known to significantly influence yield vari-
ability [29,3,30]. These climatic variables are often supplemented with

Smart Agricultural Technology 12 (2025) 101540
vegetation indices, which serve as proxies for crop health and biomass
accumulation throughout the growing season [31-33]. In some stud-
ies, additional inputs such as soil characteristics and farm management
practices are incorporated as they play a critical role in determining
crop productivity by influencing root development, nutrient availability,
and water retention capacity [13,18]. Relative to these more commonly
used features, surface reflectance (SR) despite being a more direct mea-
surement of land surface condition remains relatively underexplored.
SR retains fine-grained spectral information that can better capture
subtle variations in crop health, growth stages, and stress responses
[34]. There is growing evidence that ML models relying on such data
can yield promising results in predicting crop yield or mapping crops
[15,16,21,27,35].

In assessing the relevance of crop yield predictors or features, ex-
isting approaches employ a stage-specific feature selection strategy—
choosing predictors aligned to known crop phenological phases [14,
16,13]. However, this approach risks missing interactions across time
and may suffer from temporal misalignment due to variability in plant-
ing dates or crop progress. In contrast, our work adopts a season-long
perspective, leveraging full time series via feature grouping to cap-
ture evolving conditions and interactions throughout the crop lifecycle.
Moreover, utilizing the entire time series instead of relying on certain
features at specific states is more practical.

Machine learning methods applied in yield prediction range from tra-
ditional ML techniques to deep learning models that efficiently capture
temporal and spatio-temporal information and have consistently outper-
formed statistical and tree-based methods, as shown in Table 1. Early ap-
proaches often relied on traditional ML models such as random forests,
lasso regression, or multilayer perceptrons (MLPs) [13,18]. However,
these models are limited in their ability to capture temporal dependen-
cies. To address this, recurrent neural networks, and one-dimensional
(1D) convolutions have been employed and shown improved perfor-
mances than standard multi-layer perceptrons [13,18] and statistical
or traditional ML techniques. Hybrid models combining 1D convolu-
tional neural networks (CNNs) with LSTMs have also been proposed to
jointly capture local patterns and longer-term dependencies [18,13,22].
Attention-based mechanisms further improve model performance by dy-
namically weighting relevant time steps, allowing the model to focus
on critical growth periods [18,37]. While there has been a growing
adoption of novel deep learning architectures, several state-of-the-art
approaches remain underexplored. For example, multi-scale residual
networks (MSResNet) [23] and InceptionTime [24] have achieved state-
of-the-art results in a range of time series classification and regression
tasks, yet their application to yield prediction has so far been limited.

Beyond temporal information, spatial variability plays a crucial role
in yield prediction. Geographic heterogeneity in soil properties, weather
patterns, and management practices can significantly influence crop out-
comes. To encode spatial structure, it is common practice to aggregate
features over predefined prediction units, which obscures intra-region
variability. Meanwhile, the availability of satellite image time series
(SITS) has resulted in a gradual adoption of spatial convolution archi-
tectures. 2D convolutional neural networks (2D CNNs) have been used
to extract spatial patterns from individual image frames and are often
coupled with RNNs to model temporal dependencies. In other cases,
3D CNNs or ConvLSTMs are used to directly encode spatio-temporal in-
formation [21,36]. The introduction of transformer-based models, such
as the Multi-Modal Spatial-Temporal Vision Transformer (MMST-ViT),
has also pushed the boundaries of yield prediction by incorporating
both spatial and temporal contexts in a unified architecture [36]. Spa-
tial modeling at large prediction units (e.g., counties) presents unique
challenges. Counties are irregularly sized and large, thus directly feed-
ing SITS is impractical. A feasible option is sampling uniformly sized
mini-SITS per county however, the success of SITS-based models are
questionable in how SITS data is prepared for training. Crop masking
is omitted, which will otherwise result in an SITS with reduced pixel
contiguity, [21,38,39,36] and limiting the ability to extract meaningful
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Table 1
Inter-comparison of ML models for corn and soybean yield prediction in the USA. RMSE units are in bushels per acre (bu/acre). Performances are drawn from
different studies and are not directly comparable, as they are based on varying experimental setups and input data sources. * denotes the application of temporal
data augmentation, while * indicates self-supervised pretraining. SR, FM and M represent surface reflectance, farm management and meteorological features.

Reference Features Crop masking Model Encoder RMSE (bu/acre)
SR FM M Soil Spatial Temporal Corn Soybean

ridge 8.10
decision tree 7.64

[21] v v MLP 7.19
2D CNN (histogram) v v 6.60
3D CNN v v 5.22
lasso 31.30 9.49
random forest 26.02 12.78

(3l 4 / / MLP 21.37 5.89
1D CNN-LSTM v 17.64 4.91
ridge 7.96
MLP 8.32

[16] v v v decision tree 7.73
LSTM (histogram) v 5.83
2D CNN (histogram) v v 5.55
random forest 28.76 8.21
lasso 31.23 9.24
SVM 29.84 8.37

[18] 4 4 v DNN 28.69 8.35
1D CNN-LSTM v 24.33 7.42
LSTM v 29.62 9.77
LSTM-Attention v 17.49 5.90

[19] v v MLP-LSTM v 20.71 5.27
ConvLSTM v v 18.6 7.2
CNN-RNN v 14.6 5.8

130l v v MMST-ViT v v 13.2 5.1
MMST-ViT* v v 10.5 3.9
1D CNN v v 27.00 9.68
1D CNN-LSTM v 25.48 10.96

22

(221 v v v 1D CNN-LSTM (histogram) v v 22.46 7.96
1D CNN-LSTMPA (histogram) v v 18.94 -

spatial patterns. This raises concerns about whether SITS-based mod-
els are actually learning from valid crop-specific pixels. An alternative
strategy that bypasses these shortfalls at the expense of natural spatial
order is the transformation of SITS into image histograms [16]. Pixel-
set encoders, such as PSE-TAE [20], offer another promising solution by
modeling sets of crop-specific pixels as unordered collections, enabling
flexible spatial summarization without relying on contiguity or regular
grids. This approach while dominant for crop application at the farm
level has been unexplored for large prediction units. As summarized
in Table 1, incorporating spatial information results in improved per-
formance; however, comparison is limited to a single temporal model.
Existing studies are limited by fragmented experimental setups, incon-
sistent feature choices, and incomplete spatial preprocessing. Our work
fills this gap by systematically benchmarking a range of temporal mod-
els under a unified dataset and experimental setup.

bins, b

u'n:A

multi-spectral image

Fig. 1. Transformation of a multi-spectral SITS data into 3D histograms.

encode spatial and temporal information for yield prediction using satel-
lite data. In this section, we detail these strategies, introducing the
application of pixel-set encoders to effectively capture spatio-spectral
information at large spatial scales (e.g., county level) and residual and
attention-based networks to encode temporal information. We begin by
discussing spatial encoding methods that transform pixel-level imagery
into compact representations, followed by temporal models that learn
patterns and dependencies across time. For these discussions, we target
yield prediction at county level, where for a given county and year, we
have a multi-variate SITS (X) in the format X € RTXCXHXW [ and W
are the height and width of the bounding box of an irregularly shaped
county and vary due to the different geometrical sizes of each county. T
and C represents the number of observations per year and the number
of channels/features respectively. In Section 3.1.1 and Section 3.2.1, we
present baseline approaches to spatial and temporal encoding.

3. Encoding spatial and temporal information

Accurately estimating crop yield from remote sensing data depends
on the model’s ability to learn spatial patterns and temporal dynam-
ics. Spatial patterns reflect the variability within agricultural regions
as a result of crop management, or local environmental conditions.
Temporal patterns capture phenological stages over the growing season
from emergence to senescence. Altogether, these patterns can provide
essential signals related to spatial and temporal variability and ulti-

mately crop productivity. Satellite image time series especially from
multi-spectral satellites, present a rich source of information for cap-
turing these insights. Their high-dimensionality requires summarizing
(encoding) spatial and temporal structure into meaningful features. As
highlighted in Section 2, numerous methods have been proposed to

3.1. Encoding spatial information

3.1.1. Pixel averages
Most studies addressing yield prediction at broader prediction units
(e.g., counties) simplify spatial representation by averaging all pixels
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Fig. 2. Illustration of pixel-set encoder (adapted from [20]). Random pixels are
sampled within a county and at the same location across the temporal dimen-
sion.

multi-spectral image

patch creation using randomly sampled
cropland criteria mini cube

Fig. 3. Illustration of random cropping of uniform patches across the prediction
unit (adapted from [21]). Red and blue outlines denote cropland bounds and
candidate patches, respectively.

within a given region [14,13,40]. While this approach reduces data di-
mensionality, it significantly limits the model’s capacity to learn mean-
ingful spatial features. Considering a SITS, X € RTXCXHXW 'the height,
H and width W dimensions of a satellite image are reduced into a scalar
value by computing the mean of all pixels [p,...,py] within a predic-
tion unit, where N is the number of pixels. This results in a compact
data structure of dimension, time (7') X channel (C), and permits the
learning of spectro-temporal features only.

3.1.2. Histograms

To retain some information about the pixel distribution while still
discarding spatial arrangement, another approach encodes each im-
age channel into a histogram. Assuming that the spatial arrangement
of crop pixels merely impacts yield, [16] suggested the mapping of a
SITS into a histogram of pixel counts. Pixels within each image channel
(c €[1,..,C]) are discretized into a user-defined number of bins, b to
produce a histogram A.. A compact representation of the multi-spectral
image is obtained by concatenating each histogram A, ..., i to form H.
Considering the multi-temporal nature of SITS, we obtain Hj, ..., H as
depicted in Fig. 1. The resulting histogram images can be operated by
spatial CNNs.

3.1.3. Pixel-set encoders

Spatial CNNs may be less effective on coarse-resolution satellite data
due to limited texture. Compared to images with higher spatial resolu-
tion, coarse-resolution images may exhibit minimal texture to extract
expressive spatial features. [20] proposed the pixel-set encoder (Fig. 2)
to learn statistical descriptors of the spectral distribution of pixels in
a prediction unit which is invariant to the permutation of the pixels’
location. To achieve this, a subset of pixels, S C [1,...N] is randomly se-
lected from the total number of pixels, N within a prediction unit (as
in Equation (1)) and across the time dimension, T'. Every element s € .S
is passed through an MLP consisting of a succession of fully connected
layers, batch normalization and rectified linear unit activation function
(Equation (2)).

S = subset(S, N) 1)
& =MLP(X!),¥seS 2
e' = M LP, (pooling(é")) 3

Since prediction units vary in spatial extent, the total number of
available pixels N can differ significantly. To obtain a consistent spatio-
temporal embedding ¢’, a fixed-sized subset .S is sampled. For smaller
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counties where N < S, pixels are sampled with replacement (i.e., re-
peated sampling) to meet the required input size. The resulting layer
is pooled along the subset dimension and further processed by a con-
figuration of MLPs (Equation (3)) to obtain a spatial representation.
Generalization in this approach is enforced by randomly selecting new
subsets during each training step. The encoding of spatio-spectral infor-
mation as set-encoders or histograms overcomes the strict requirement
of having fixed-sized input, which is impractical for administrative units.

3.1.4. Image patches

While the PSE and histogram methods retain some degree of spatial
variability, they disregard the positional relationships among pixels. As
[21] argued, omitting or randomly permuting the spatial layout leads
to a loss of local contextual information, particularly the variations be-
tween neighboring pixels, which may be critical for capturing spatial
structure. Such variations can form distinctive textural patterns, even
in coarse-resolution satellite imagery, that are informative for CNNs
trained to recognize spatial structure. Following this rationale, [21]
designed input data as randomly sampled mini-images (patches) of a
prediction unit (Fig. 3). Spatial CNNs can then be used to encode spa-
tial information by leveraging convolutional layers that apply localized
filters across the input, generating feature maps that capture hierarchi-
cal spatial features such as textures and patterns. These feature maps
serve as progressively abstract representations of the spatial structure
in the data. The shortfalls of this approach in the context of crop yield
prediction where crop masking is essential is described in Section 2.

3.2. Encoding temporal information

Following the application of spatial encoding techniques, the re-
sulting SITS representations retain their temporal structure, which en-
capsulates crop phenological progression over the growing season. To
effectively leverage this temporal dimension, it is necessary to employ
models capable of capturing time-dependent patterns and sequential
dynamics. In this section, we present a range of temporal encoding
approaches, beginning with traditional machine learning methods that
operate on temporally unordered features, and progressing to advanced
deep learning architectures specifically designed to model temporal de-
pendencies.

3.2.1. Unordered temporal sequences

Random Forests (RF), Gradient Boosted Trees (GBT), and Support
Vector Machines (SVM) are widely used ML models for satellite-based
classification and regression tasks [16,21,35]. Due to their simplicity,
low computational cost, and historical success, they are often used as
strong baseline models. RF is an ensemble method that builds multiple
decision trees from different data subsets and averages their predictions
to overfitting and improve generalization. GBT sequentially constructs
trees, each correcting the errors of the previous ones. SVM aims to find
an optimal hyperplane that separates the data while maximizing the
margin between support vectors. This makes them particularly effec-
tive in high-dimensional feature spaces. MLPs are fundamental building
blocks in deep learning architectures. They are a class of feed-forward
networks composed of multiple layers of interconnected neurons. Input
features are forward-passed to a function that computes their weighted
sum as a linear combination of their weights. An activation function
adds non-linear transformations to the inputs to learn complex relations.

All these models require 2D inputs (samples X features). For SITS,
this means the multi-temporal and multi-spectral dimensions (i.e., time
steps and channels) must be flattened into a single feature vector per
prediction unit. This flattening operation eliminates any notion of tem-
poral order or sequence structure, preventing the models from capturing
dynamics over time. Despite this limitation, these models are included
as baselines in our study to benchmark the performance of more ad-
vanced, sequence-aware architectures described in later sections.
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Fig. 4. Schematic diagram of TempCNN. 1D convolutions and the first dense
layer are succeeded by batch-normalization, ReLU and dropout layers. FC de-
notes a fully connected layer.

3.2.2. Temporal convolution neural networks

CNNs are popularly used for image recognition tasks but have been
applied in several remote sensing applications [41]. Although they are
often used in the extraction of spatio-spectral features, they have been
applied to embed temporal information for tasks involving sequences or
time series data [13,27,23]. In the temporal domain, CNNs use 1D con-
volutional layers that slide filters over sequences of observations (e.g.,
multi-spectral reflance values across time. These filters capture short-
term temporal patterns such as growth trends or phenological shifts.
One notable architecture in this space is TempCNN [27] which relies on
temporal convolutions for time series classification using satellite data.
The architecture, as shown in Fig. 4, consists of sequences of 1D con-
volution layers succeeded by batch normalization, ReLU and dropout
layers. A dense layer operates on the output of the convolution blocks
to map the extracted representations to a target (e.g., yield).

Beyond simple temporal convolutions, more advanced architectures
that rely on residual networks and uses multiple convolution branches
with different kernel sizes to enhance temporal feature extraction have
also been applied to time series applications. We detail the configura-
tion of a specific architecture called the Multi-Scale Residual Network
(MSResNet) [23].

The architecture consists of three independent streams of 1D convo-
lutions operated by different kernel sizes (Fig. 5). These parallel streams
allow the model to learn short and long-term patterns at different tempo-
ral resolutions simultaneously. Skip connections are introduced to suc-
ceeding convolution blocks to learn earlier levels of abstraction. Then,
the separate representations derived by multiple scales (kernel sizes) are
average-pooled and concatenated to combine features learned at multi-
ple scales. A fully connected layer processes the concatenated features
to predict a target. MSResNet requires an input temporal size of 512;
hence, an initial interpolation is required for shorter sequences.

Several other models exist for benchmarking non-satellite image
time series tasks, such as the UCR time series archive [42]. A notable
mention is the InceptionTime model, which achieved state-of-the-art
performance on a significant number of classification tasks in the UCR
archive. InceptionTime is an ensemble of inception networks succeeded
by a global average pooling layer and a dense layer. The central build-
ing block of the InceptionTime architecture is the inception module.
Each module includes a bottleneck layer for dimensionality reduction,
followed by three parallel 1D convolutional layers with different kernel
sizes and a max-pooling path. The outputs from these convolutional lay-
ers are concatenated, enhancing the model’s ability to learn both short
and long-term dependencies efficiently. Akin to MSResNet, Inception-
Time introduces residual connections within its network layers and has
been explored for crop type mapping [35].

3.2.3. Recurrent neural networks

Sequence-based neural networks, such as Recurrent Neural Networks
(RNNs), are specifically designed to model temporal dependencies in se-
quential data. Unlike traditional feedforward architectures, RNNs incor-
porate recurrent connections, allowing them to retain information from
previous time steps. This makes them well-suited for tasks where past
context is essential, such as speech recognition and language modeling.
In the context of satellite time series, RNNs can model crop dynamics
by processing spectral observations over time. However, standard RNNs
struggle to learn long-term dependencies due to issues such as vanish-
ing or exploding gradients. To address this limitation, Long Short-Term
Memory (LSTM) networks [26] were developed. LSTMs enhance the
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RNN architecture by introducing memory cells that can maintain in-
formation over longer sequences. Each LSTM cell contains three gates
namely the forget, input, and output gates, that regulate the flow of
information. The forget gate determines what information to discard
from the previous cell state, the input gate controls which new infor-
mation to add, and the output gate decides what part of the cell state
to expose as output. These gates are controlled by learned weights and
nonlinearities, enabling the network to selectively preserve or update
memory across time steps. This gated mechanism allows LSTMs to miti-
gate the vanishing gradient problem and effectively capture both short-
and long-term dependencies. As shown in Fig. 6, the LSTM cell pro-
cesses both the current input and the previous hidden state to update its
internal memory and compute the output for the current time step. This
structure makes LSTMs particularly suitable for modeling crop pheno-
logical stages, which unfold gradually over time and require memory
of past growth conditions. Compared to temporal convolutions, LSTMs
operate sequentially.

3.2.4. Attention-based networks

Attention mechanisms have emerged as a powerful alternative to
RNNs for sequence modeling, offering improved parallelism and flex-
ibility. The primary idea of attention is to allow the model to focus
dynamically on the most informative parts of an input sequence when
making predictions. In crop classification tasks, attention patterns have
been shown to has been shown to capture narrow, distinct temporal
instances that obtain classification-relevant features, while suppressing
observational noise such as cloud contamination in raw satellite time
series [43,25]. One such model is the Lightweight Temporal Attention
Encoder (LTAE), originally proposed for satellite-based crop type map-
ping [25]. LTAE employs self-attention mechanism to encode satellite
series into feature embeddings. It incorporates multi-headed attention
[44] by splitting the input channels into groups (heads), allowing each
head to capture distinct temporal patterns in parallel. For each head,
a master query vector is defined, and attention scores are computed
as the scaled softmax of the dot-product between the keys and the
master query (Fig. 7). These scores are used to generate temporally
weighted representations of the input. The outputs of each head are
the temporally weighted sums of the inputs, effectively summarizing the
most informative temporal segments. They are further concatenated and
processed by a multi-layer perceptron to generate the final feature em-
bedding. In empirical evaluations, LTAE has outperformed traditional
RNNs (including GRUs and LSTMs) and temporal CNNs in both predic-
tion accuracy and computational efficiency for crop type classification
tasks [25].

4. Study area and data

The United States of America (USA) is the world’s largest producer
of corn, accounting for approximately one-third of global production.
A momentous reduction in corn yield has severe implications for do-
mestic availability, market pricing, and export quantities. 2012 was one
such year where an extreme drought precipitated poor production. The
majority of the crop fields entered this season with below-average mois-
ture [3], resulting in a high variance in average yield compared to the
previous year’s estimates (Fig. 8). We conduct our study in the USA’s top
five corn-producing states: Iowa, Illinois, Indiana, Nebraska, and Min-
nesota. Altogether, they accounted for over one-half of the USA’s corn
(grain) production in 2021 [45]. We rely on gridded surface reflectance,
spectral indices and weather data from our ongoing work [46] that seeks
to produce a large-scale, multi-resolution spatio-temporal dataset for
crop monitoring in the USA. Average farm sizes in the selected states
are over 250 acres [47]. As a result, coarser resolution satellite images
such as MODIS suffice for understudying satellite-based crop yield pre-
diction and have been used extensively in this region [16,21,48].
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previous cell state (c,_;) are retained. The input gate (i,) and candidate state (g,) update the cell state. The cell state is revised by combining the outputs of the forget
and input gates. Finally, the output gate (o,) controls how much of the updated cell state contributes to the new hidden state (4,).

o}y
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Fig. 7. Schematic diagram of LTAE (adapted from [25]) demonstrating multi-head operation for an input time series (T X C). The initial channel dimension, C,

undergoes a linear projection before a multi-head learning process.

Nebraska

Fig. 8. Map of the five states showing the difference in average corn yield
(bu/acre) for the drought year (2012) and the pre-drought year (2011). Extreme
reduction in yield losses was observed in Iowa, Illinois, Indiana and eastern Ne-
braska.

4.1. County-level yield records

County-level corn yield (bu/acre) data is obtained from the National
Agriculture Statistics Office of the United States Department of Agricul-
ture (USDA-NASS). The data is available yearly for several commodities.
We retrieved 19 years of corn records in tabular form, from 2003 to 2021
and for the 473 counties in this region. Throughout these years, some
yield records were missing; for example, in 2020 and 2021, only 94%
and 77% of the counties, respectively, had yield records.

4.2. Crop type maps

The USDA-NASS provides annual gridded crop type maps at 30-
meter resolution. The maps are produced using decision-tree methods to
provide acreage estimates for major crops. For earlier years, e.g., 2003,
no crop map was available for Minnesota; hence, satellite time series for
this location were discarded. Overall, the reported mapping accuracy for
corn exceeds 90% in the selected states [49]. The crop-type layer is used
to mask out the SITS per year.
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Fig. 9. Comparing the temporal variability in spectral reflectance, weather vari-
ables, and spectral indices for a pre-drought year (2011 - blue) and drought year
(2012 - red) for a selected county in Nebraska. Surface reflectance features are
unitless and range between 0 and 1. Temperature and precipatation plots are in
°C and mm respectively. The temporal variations are prominent in short-wave
infrared (SWIR), NDVI, NDWI, and precipitation deficits from July onwards.
During these years, the average yield for the selected county was 164.9 and
99.1 bu/acres, respectively, for 2011 and 2012.

4.3. Surface reflectance and spectral indices

The moderate-resolution imaging spectroradiometer instrument
(MODIS) is one of the longest-standing remote sensing missions. Its
global coverage and high temporal frequency allow for near real-time
monitoring. The collection MOD9A1.061 [50] estimates land surface
reflectance along the visible and infrared (IR) range (see Table A.1 in
Appendix A) at a spatial resolution of 500 meters and a revisit of 8 days
(resulting in ideally 46 timesteps every year). Each pixel in this prod-
uct represents the highest-quality observation identified over an 8-day
interval and chosen based on criteria such as extensive observation cov-
erage, minimal viewing angle, clear atmospheric conditions (absence of
clouds and cloud shadows), and low aerosol presence. Two spectral in-
dices are computed from MODIS bands to supplement the reflectance
data: normalized difference vegetation index (NDVI) and normalized
difference water index (NDWI) to incorporate domain-knowledge fea-
tures. The two-band NDWI is derived from a near IR band and a second
IR band as in [51]. NDVI is computed as the normalized difference
between the near IR and red band. NDVI and NDWI approximate vege-
tation greenness and canopy water content, respectively.

4.4. Weather data

We consider precipitation and temperature information from Daymet
[52] as indicators of weather conditions during crop growth. Daymet in-
terpolates several weather variables from ground-station measurements
using statistical techniques at a daily temporal resolution and at 1 km
spatial resolution. For this study, only precipitation and minimum and
maximum temperature are used. Fig. 9 shows the temporal variation of
the selected weather variables, surface reflectance and spectral indices
for a selected area across different crop seasons (years), highlighting
their potential to capture yield dynamics.

As our task involves yield prediction at the county level, the dataset
is structured such that for each county (i) at a given year, we construct a
multi-variate time series (X) in the format X; € RTXC*H>XW [ and W
are the height and width of the bounding box of an irregularly shaped
county and vary due to the different geometrical size of each county. T'
and C represents the number of observations per year (46 timesteps) and
the number of channels (12 features) respectively, the harmonization
of features with varying spatial and temporal resolutions is detailed in
Section 5.
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5. Experiment

In this section, we describe how the multi-source data presented in
Section 4 is harmonized before training the yield prediction models. In
addition, the yield prediction task is formulated, and the experiment
setup is described.

5.1. Data processing

Daymet data is resampled to the resolution of MODIS. Given the
coarse nature of MODIS and Daymet data and the relatively higher spa-
tial resolution of the cropland layer, a remapping scheme is adopted to
downsample the cropland layer to 500 meters. First, the cropland mask
is overlaid over the 500-meter MODIS grid; then a threshold is defined to
remap each grid as corn if it constitutes 60% or more coverage. A year-
by-year crop masking is performed on the SITS to filter out non-corn
pixels. Then the start and end period of the yearly time series is trun-
cated to focus on the usual corn season (April to October) [53], reducing
the 46 timesteps to 27. To harmonize the different temporal frequencies
of MODIS and Daymet, daily Daymet variables are reduced to 8-day
temporal resolution by averaging. The resulting data is normalized chan-
nelwise using each channel’s 2" and 98" percentile calculated over the
whole data. Our final SITS is of size X € R?7¥!>¥HXW and form the ba-
sis for transforming the input data into the various formats described in
Section 3. For the period considered (2003-2021), the total number of
samples available for training, validation and testing was 4940, 2116
and 795 respectively. Fig. 10 shows our data preparation workflow.

5.2. Experiment setup

We formulate the task by predicting the average yield of a county
(i) at a given year (y) using its corresponding multi-variate time series
X such that X; € RTXCXHXW _ e R. Our baseline models are tree-
based methods (RF, XGBoost), SVM and MLP. Here, spatial information
is summarized as pixel averages, and temporal sequences are merely
treated as features. 1D temporal convolution-based models (TempCNN,
MSResNet, InceptionTime), LSTM and LTAE are similarly applied to
pixel averages to investigate how the different ways of handling tem-
poral information compare to models that do not consider temporal
order. Under this category of experiments, we also augment an LSTM
with an attention mechanism. Histogram images are processed with 2D
convolutions (Histogram-2D) similar to the architecture used in [16].
In another experiment, the sequential part of the histogram is handled
using LSTMs (Histogram-LSTM) and temporal convolutions (Histogram-
TempCNN) and the bin and channel dimensions are flattened to expand
the feature space. Pixel-set encoders are applied to sampled pixels, and
the temporal dimension is handled with LTAE (PSE-LTAE) as per the
original architecture [25]. In this strategy, we first select 80% of pix-
els within each county (defined by the distance to the county’s mean
NDVI) to reduce the influence of extreme values and then extract the
values of 500 of these pixels. The amount of pixels sampled was deter-
mined by first inspecting the pixel count for all and experimenting across
a 100 to 1000 sampling range. Where necessary, repeated sampling is
performed to obtain a uniform number of pixels across all counties and
years. For all experiments, we find the optimal parameters that will min-
imize the sum of the squared difference in observed (y;) and predicted
(¥;) yield as seen in Equation (4). For deep learning models, we use the
Adam optimizer [54] initialized with momentum parameters f;, f, =
0.9, 0.99. Our validation set serves as the reference for hyperparameter
optimization and consists of 30% of the counties within each state, with
the remaining 70% used for training. This split is based on the num-
ber of counties and not individual samples to ensure spatial separation
between training and validation data. The model configuration that re-
sults in the lowest validation loss is then used to predict outcomes for
our independent test set (2020 and 2021), which are the recent years in
our dataset.
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5.3. Evaluation metrics

The experiments are quantitatively evaluated using standard statisti-
cal metrics, namely mean absolute percentage error (MAPE), root mean
squared error (RMSE), and coefficient of determination (R?). ¥ is the
mean of the observed corn yield and » is the number of data points.
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6. Results and discussion

In this section, we report the performances of the spatio-temporal
models and further investigate, using MSResNet, the influence of the
time window selection, feature combination, in-season forecasting and
the impact of the previous year’s information on the model’s perfor-
mance. The MSResNet is selected for further analysis due to its unex-
plored potential in this use case compared to single-kernel temporal
convolution.

6.1. Comparing spatial-temporal encoding techniques

Table 3 summarizes model performance across three metrics: MAPE,
RMSE, and R?. The average MAPE on the test sets is generally below
10%, and the RMSE is higher in the test year 2021 compared to 2020,
likely due to excluding 2020 samples from the training data, a point dis-
cussed further in later sections. Among models using time-series pixel
averages, SVM outperformed other baselines that do not account for
temporal order, as well as the LSTM and Histogram-2D models. This
contrasts with Table 1, which suggests that classical methods gener-
ally underperform relative to deep learning models. When metrics are
averaged across both test years, TempCNN achieves the best overall
performance, as further evidenced by Fig. 11, where it reduces high
percentage difference errors. However, its improvement over MSRes-
Net and SVM is modest. We observed that the performance of LTAE

Table 2

Model complexity by number of learnable pa-
rameters. Each model is optimized separately
using Optuna [55], an automatic hyperparam-
eter optimization framework.

Model Number of parameters
RF/XGBoost/SVM -

MLP 297 K

TempCNN 488 K

LSTM 466 K

LSTM-Attn 52K

MSResNet 8M

InceptionTime 208 K

LTAE 65 K

Histogram-LSTM 54M

Histogram-2D CNN 23M
Histogram-TempCNN 3M
PSE-LTAE 3M

declines when the pixel-set encoder (PSE) is introduced, possibly due
to PSE’s limitations in handling sampling within large prediction units
where there is high spectral variation, unlike the more consistent con-
ditions in farmlands.

Flattening the histogram and modeling the temporal component with
1D temporal convolution proves more efficient than using an LSTM or
applying a spatial CNN to histogram images (Histogram-2D), as it re-
sults in a less complex model (see Table 2). Introducing attention into
LSTM:s can result in a less complex model with performance comparable
to standard LSTMs, provided that hyperparameters are carefully tuned.
Meanwhile, prior studies have reported that attention-based LSTMs can
significantly reduce RMSE up to 40% in yield prediction tasks [18].

6.2. Assessing feature importance via grouped feature analysis

Our initial feature selection was informed by existing studies [16,21]
and the impact of weather on crop yield in our study area [3]. As illus-
trated in Fig. 9, the effects of one of the most prominent droughts can
be observed in our choice of features, suggesting that they can capture
yield variations. To further isolate feature contributions, we explored
how different subsets of features performed relative to the entire set
of features. Specifically, we conducted independent experiments using
spectral features, satellite-derived spectral indices, weather features, or
their combinations. From Table 4, spectral features (surface reflectance)
consistently perform well independently, particularly in terms of R?, in-
dicating that it captures a substantial amount of variability in yield as
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Performance of the different machine learning models. RMSE is reported in bushels per acre
(bu/acre) and bold values reflect the lowest RMSE column-wise.

Model Test(2020) Test(2021)
MAPE RMSE R? MAPE RMSE R?
RF 7.1110.07 15‘74:0.18 0‘4810'02 8'1210,28 18.6Oi0'53 057:0,03
XGBoost 6.9310.04 15.24:0.07 0.51:0.01 7‘7310.23 17.80t0'44 0.6Ot0'02
SVM 6A46i0‘37 14‘2110,80 0.5810,05 7.48i0‘23 16.52t0'50 0.66t0‘02
MLP 7.4010,18 15.61¢O.34 0.49¢0,02 7'201014 16‘44:0.36 0'66¢0A01
LSTM 6.76i0'26 14.59¢O.58 0.5610'04 8'5610,49 19‘07:0.93 054:0,04
LSTM (attention) 6.85%0-52 15.01+109  .53¥007  g38=034 1867077  (.56%004
TempCNN 6.48+052 1389095 0,60%005  7,00°%32  16.05*%87  (.68+003
MSResNet 6.23+019 1377037 (,60%002 7927038 1693117 (,64%005
InceptionTime 6.99+0:55 15.14%0-57 0.52+004 7.13=055 16.36%1:32 0.66+005
LTAE 8.0710.67 17.3711.39 0.3710.10 7‘55*;0.68 17.423;1.90 0.62*0'09
Histogram-LSTM 6.57+0-26 14.28*0-56 0.57+0:03 7.920:66 18.13+0-98 0.59+005
Histogram-TempCNN ~ 6.21*%-16 13,6503  0.61x002 753057 17.37%1:22 0.62%005
Histogram-2D CNN 6.81£044 1499065 (53004 7 7gxl.47 177829 () Q014
PSE-LTAE 8.93+0-37 19.08+059  (,24%005 12,6320  27,18+354 7024
XGBoost MLP LSTM TempCNN
3 |
&

MSResNet LTAE
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Fig. 11. Maps showing the percentage difference in observed and predicted corn yield for 2021. Areas with no data are depicted in gray.

reported in related studies [15,16]. Fig. 9 also illustrates that the in-
fluence of weather is evident in the surface reflectance bands, and the
correlation between weather and spectral features or indices has been
substantiated in the literature [56,57]. Models incorporating surface re-
flectance and either weather or spectral indices achieved the best overall
performance and stability across different test years. Weather features
alone show moderate performance on the validation set but exhibit sig-
nificant errors during generalization, indicating that this combination is
far worse than using the mean of the target values. Including all features
does not necessarily equate to improved performance [16,27]. The per-
formance gain observed with SR, or SR combined with spectral indices
or weather variables, compared to using all features, may be model-
specific, as our findings are based on a single model demonstration.
While it is generally expected that combining diverse data sources
enhances model performance [28], our results showing that SR alone
provides the best configuration can be attributed to several factors.
First, SR bands directly capture key vegetation properties (e.g., chloro-
phyll and biomass), while spectral indices are derived from these same
bands, often adding redundant than complementary information. Sec-
ond, the early fusion strategy (feature concatenation) used in our setup
may not adequately handle heterogeneity between data sources, limit-
ing the model’s ability to extract additional value from non-SR inputs.
Finally, increasing the number of input features expands the dimen-

sionality of the input space, which may lead to overfitting, especially
when the added features are not sufficiently informative. In combina-
tion, these factors can dilute the model’s learning signal and result in
reduced generalization performance. Sophisticated fusion strategies can
be explored to better integrate heterogeneous data sources [58,22,59]1,
while feature selection methods may help to more effectively leverage
complementary information [28].

6.3. Influence of time window selection on model performance

Considering that the factors influencing yield and their patterns over
a long-term window can change, we study the impact of a reduced time
window (consequently training data size) on the generalization capabil-
ity of the MSResNet model. For this experiment, we truncate the year
range to generate samples for building a model by considering a 4-year
(2016-2019) and an 8-year window (2012-2019) before 2020. These
specific time windows were selected based on two criteria (i) analysis
of drought patterns from the US drought monitor [60] which highlighted
significant interannual variability during this period, and (ii) the need
to balance recency with data sufficiency. The 4-year window captures
only the most recent trends, which may reflect current climatic and man-
agement conditions. However, it results in a smaller number of training
samples. In contrast, the 8-year window offers a broader view of his-
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The performance of MSResNet on the different feature groups. RMSE is reported in bushels per
acre (bu/acre), and bold values reflect the lowest RMSE column-wise. SR denotes surface re-

flectance.
Feature Test(2020) Test(2021)
MAPE RMSE R? MAPE RMSE R?

SR 5.56=0-14 12.70%%15  0.66*%-0! 6.33%0-36 15.30%1%7  0.71%0-05
Weather 1277120 27.34%257 -0.57+030 1462174 31.48+338 -0.25%0-27
Indices 6.96%0-67 16.40%148  0,44%01 7.74%0-47 18.08+097  (.59+0-04
Indices+Weather ~ 6.62+0-25 14.69+0%7 0.55+0-02 7.25+0-24 17.08+062 0.63+0-03
SR+Weather 5.96%0-24 13.16057 0.64%0-03 6.80%017 15.91+0-67 0.68+003
SR+Indices 5.81x0%7 12.85%0:66 0.66+004 6.55%0¢ 15.85%1:33 0.60%007
All features 6.23+0-19 13.77+037 0.60+0-02 7.27+0-38 16.93+117 0.64+0-05

Table 5

The performance of MSResNet on different sizes of the training data. RMSE is reported in bushels
per acre (bu/acre), and bold values reflect the lowest RMSE column-wise.

Window Test(2020) Test(2021)

MAPE RMSE R? MAPE RMSE R?
MSResNet (4 years) 6.67£064 1516132 (0.52¥009 689032 1546064 (,70*002
MSResNet (8 years) 5.92:058  13,42%1.08  (,62:006  6,39*041  14,89*0.85  ( 72+0.03
MSResNet (17 years) ~ 6.23*01°9 1377037 0.60%002  7,27+038 16.93*117 0.64+005

Table 6

In-season yield prediction performance of MSResNet. Experiments rely on data from the
start of the season until mid-season and with progressive increments of two timesteps (16
days). RMSE is reported in bushels per acre (bu/acre), and bold values reflect the lowest

RMSE column-wise.

Date ending Test(2020) Test(2021)
MAPE RMSE R? MAPE RMSE R?

July 28 6.81+0:29 15.35%0-55 0.51+0.03 7.59+0.26 18.09=0-42 0.59+0:02
August 13 6.412006  14.44%022 (57001 7054058 1733+1.29 (24006
August 28 5.60%0-32 1278061  0.66%003  6.94%105 1673220  (,65%010
September 14~ 5.92%045  13.46=091  (.62:005  7,04%067  16.97+14  0.64%005
September 30 5.93%033  13.12:089  (0,642005 = £.343035 15474079 ,70+0-03
October 24 6.23=019 1377037 0=002  727+038 1693117 (,64%005

torical variability and includes more extreme events, such as the severe
drought of 2012 [3], while avoiding earlier years that may no longer
be relevant due to shifts in production practices or climate. Within
this 8-year window, the average yield across most states showed im-
provement compared to earlier years (pre-2012), apart from the notable
dip during the 2012 drought. This setup allows us to evaluate whether
recency or volume of training data has a greater impact on model gen-
eralization. Compared to the baseline results, where 17 years of data
are considered, the 8-year window generalized better to both test years
(Table 5). The model’s improved performance using recent data suggests
that concept drift [61] may be present in the data. An adaptive train-
ing approach, such as weighting recent data more, may be appropriate
when considering longer historical data to ensure the model’s reliance
on recent trends. The poorer performance observed for the 4-year win-
dow may be attributed to the limited amount of training data, which
restricts the model’s ability to capture the diversity and variability in
yield-influencing factors over time.

6.4. In-season forecasting

Predicting yield both in-season and at the end of the season is crucial
for effective agricultural management. These predictions enable timely
interventions to prevent disruptions in the food supply chain and pro-
vide valuable insights for crop marketing and distribution planning.
Numerous studies on in-season yield forecasting have shown that mod-
els become increasingly reliable as more temporal information becomes
available [15,16,21]. In this context, forecasting involves progressively
increasing the sequence of time steps leading up to harvest. In contrast,
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[19] relied on long-term climate forecasts (combined with static soil
parameters) to achieve a much longer lead time. However, long-term
forecasts may be subject to high uncertainties that make them unreli-
able [62]. We address forecasting using the former approach with the
end of July (mid-season) as our baseline and gradually adding 2 time
steps (16 days) until the usual harvest dates. As shown in Table 6, longer
time spans improve yield prediction accuracy in-season, but the perfor-
mance gain is not linear. Optimal performance is observed around late
August. After this period, extending the time steps provides diminish-
ing returns. The variability in yield estimation across years points to the
inherent challenge of generalizing machine learning models for time se-
ries yield prediction. Our results emphasize the importance of capturing
seasonal patterns accurately while managing the complexity introduced
by extending the prediction timeline.

6.5. Including the previous year’s data in training

Our experiment setup mimics a scenario where both test years are
treated independently. Meanwhile, the previous year’s season may bear
the closest resemblance to the current season since adjustments to man-
agement practices or the effects of extreme events can linger into the
current season. It has been established that the inclusion of the previ-
ous year’s yield as a feature can enhance prediction accuracy [28]. In
our case, we make a broader assumption that the absence of the training
samples (including features and yield) from the previous year can reduce
the predictability of a present season’s yield. To evaluate the validity of
this assumption, we redesigned our experiment by incorporating sam-
ples from 2020 into the training and validation sets while reserving 2021
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exclusively as the test set. The MSResNet model under this configuration
achieved an MAPE = 6.36%038 RMSE = 14.89*1:03 and R? = 0.72+0:04,
Compared to the scenario where 2020 was omitted, the RMSE is re-
duced by 2 units, and the R? improved by 12%. We compare our results
to existing studies using ML for corn yield prediction in the USA. From
Table 1, models for corn yield prediction based on 1D CNN-LSTM and
LSTM (with attention) reported an RMSE of around 17 bu/acre on the
test sets. Our MSResNet model outperforms these references, achieving
13.77 in 2020 and 14.89 in 2021 (when 2020 is included in its train-
ing set), albeit under different experiment setups and input data. Our
result based on light-weight time series data is comparable to the perfor-
mances of ConvLSTM and MMST-ViT [36], and better than multi-modal
Histogram-LSTM models [22], which are trained on a massive amount of
high-resolution spatio-temporal satellite data (Sentinel-2). However, the
MMST-ViT becomes advantageous when pre-trained via self-supervised
learning.

7. Conclusion

Machine learning models have seen significant advancements, lead-
ing to their growing application in yield prediction. These models en-
compass a wide range of architectural designs, requiring simple to
complex input data structures. Although existing research highlights
progress in ML-based yield prediction, the uniqueness of each study in
terms of data inputs and experiment setup challenges their intercom-
parison. This study provides a comprehensive comparison of various
ML techniques for corn yield prediction, highlighting different ways to
encode spatial and temporal information. We underscore the predictive
strength of time series data without spatial features and the benefits
of surface reflectance data. Moreover, excluding previous-year data in
training decreases prediction accuracy for the current year, reinforcing
the value of temporal continuity in training. Our time-controlled experi-
ments confirm the effectiveness of ML models for in-season predictions.
While our experiments focused on commonly used deep learning mod-
els, future work could explore more complex hybrid architectures, such
as CNN-Transformer combinations, which combines local and global
feature extraction and have shown promise in related applications [63].
Similarly, pretrained models that leverage large-scale remote sensing
datasets may offer improved generalization and reduced training re-
quirements. These directions, alongside adaptive learning strategies that
prioritize recent data, could enhance the robustness of crop yield pre-
diction models under changing environmental and management condi-
tions.
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Appendix A

Table A.1
MODIS band designation with corresponding
wavelength range. IR refers to infrared.

Band Description Wavelength (nm)
band 1 red 620 - 670

band 2 near IR 841 - 876

band 3 blue 459 - 479

band 4  green 545 - 565

band 5 near IR 1230 - 1250
band 6 short wave IR 1628 - 1652
band 7 short wave IR 2105 - 2155

Data availability

The dataset used is the first version of a multi-sensor US-wide dataset
currently being collated by the Chair of Data Science in Earth Observa-
tion at the Technical University of Munich (under the MONITOR and
MLA4Earth project) to facilitate methodological advances in remote sens-
ing for crop monitoring and climate-related applications. The dataset
and the code supporting this study are available in our GitHub reposi-
tory: https://github.com/ellaampy/SpatioTemporalYield.
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