Schmalwasser, Laines und Penzel, Niklas und Denzler, Joachim und Niebling, Julia (2025) FastCAV: Efficient Computation of Concept Activation Vectors for Explaining Deep Neural Networks. In: 42st International Conference on Machine Learning, ICML 2025, 267, Seiten 53316-53342. Proceedings of Machine Learning Research. ICML 2025, 2025-07-13 - 2025-07-19, Vancouver, Kanada. ISSN 2640-3498.
|
PDF
4MB |
Offizielle URL: https://proceedings.mlr.press/v267/schmalwasser25a.html
Kurzfassung
Concepts such as objects, patterns, and shapes are how humans understand the world. Building on this intuition, concept-based explainability methods aim to study representations learned by deep neural networks in relation to human-understandable concepts. Here, Concept Activation Vectors (CAVs) are an important tool and can identify whether a model learned a concept or not. However, the computational cost and time requirements of existing CAV computation pose a significant challenge, particularly in large-scale, high-dimensional architectures. To address this limitation, we introduce FastCAV, a novel approach that accelerates the extraction of CAVs by up to 63.6x (on average 46.4x). We provide a theoretical foundation for our approach and give concrete assumptions under which it is equivalent to established SVM-based methods. Our empirical results demonstrate that CAVs calculated with FastCAV maintain similar performance while being more efficient and stable. In downstream applications, i.e., concept-based explanation methods, we show that FastCAV can act as a replacement leading to equivalent insights. Hence, our approach enables previously infeasible investigations of deep models, which we demonstrate by tracking the evolution of concepts during model training.
| elib-URL des Eintrags: | https://elib.dlr.de/220032/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
| Titel: | FastCAV: Efficient Computation of Concept Activation Vectors for Explaining Deep Neural Networks | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 6 Oktober 2025 | ||||||||||||||||||||
| Erschienen in: | 42st International Conference on Machine Learning, ICML 2025 | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| Band: | 267 | ||||||||||||||||||||
| Seitenbereich: | Seiten 53316-53342 | ||||||||||||||||||||
| Herausgeber: |
| ||||||||||||||||||||
| Verlag: | Proceedings of Machine Learning Research | ||||||||||||||||||||
| Name der Reihe: | Proceedings of the 42nd International Conference on Machine Learning | ||||||||||||||||||||
| ISSN: | 2640-3498 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | explainability, concept-based explanations, concept activation vectors, computational efficiency, deep learning | ||||||||||||||||||||
| Veranstaltungstitel: | ICML 2025 | ||||||||||||||||||||
| Veranstaltungsort: | Vancouver, Kanada | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 13 Juli 2025 | ||||||||||||||||||||
| Veranstaltungsende: | 19 Juli 2025 | ||||||||||||||||||||
| Veranstalter : | International Machine Learning Society | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Kollaboration von Luftfahrt-Operateuren und KI-Systemen | ||||||||||||||||||||
| Standort: | Jena | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||||||
| Hinterlegt von: | Schmalwasser, Laines | ||||||||||||||||||||
| Hinterlegt am: | 01 Dez 2025 13:12 | ||||||||||||||||||||
| Letzte Änderung: | 01 Dez 2025 13:12 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags