Diaconu, Codrut-Andrei und Zekollari, Harry und Bamber, Jonathan L. (2025) DL4GAM: A Multi‐Modal Deep Learning‐Based Framework for Glacier Area Monitoring, Trained and Validated on the European Alps. Earth and Space Science, 12, Seiten 1-23. American Geophysical Union (AGU). doi: 10.1029/2025EA004197. ISSN 2333-5084.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
7MB |
Kurzfassung
Glaciers play a critical role in our society, impacting everything from sea-level rise and access to clean water to the tourism industry. Their accelerated melt represents a key indicator of the changing climate, highlighting the need for efficient monitoring techniques. The traditional way of assessing glacier area change is by rebuilding glacier inventories. This often relies on manual correction of semi-automated outputs from satellite imagery, which is time-consuming and susceptible to human biases. However, recent advancements in Deep Learning have enabled significant progress toward fully automatic glacier mapping. In this work, we introduce DL4GAM: a multi-modal Deep Learning-based framework for Glacier Area Monitoring, available open-source. It includes uncertainty quantification through ensemble learning and a procedure to identify the imagery with the best mapping conditions independently for each glacier. DL4GAM is trained and evaluated on the European Alps, a region for which experts estimated an annual change rate of around −1.3% over 2003–2015. We use DL4GAM to investigate the glacier evolution from 2015 to 2023 using Sentinel-2 imagery and elevation (change) maps. By employing geographic cross-validation, our models, based on U-Net ensembles, demonstrate strong generalization capabilities. We then apply the models on 2023 data and estimate the area change at both the glacier and regional levels. Regionally, we estimate an area change rate of −1.90 ± 1.26% per year. We provide quality-controlled individual estimates over 2015–2023 for about 900 glaciers, covering around 70% of the region. Debris-covered regions remain the most uncertain.
| elib-URL des Eintrags: | https://elib.dlr.de/218987/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
| Titel: | DL4GAM: A Multi‐Modal Deep Learning‐Based Framework for Glacier Area Monitoring, Trained and Validated on the European Alps | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 20 September 2025 | ||||||||||||||||
| Erschienen in: | Earth and Space Science | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Ja | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||
| Band: | 12 | ||||||||||||||||
| DOI: | 10.1029/2025EA004197 | ||||||||||||||||
| Seitenbereich: | Seiten 1-23 | ||||||||||||||||
| Verlag: | American Geophysical Union (AGU) | ||||||||||||||||
| ISSN: | 2333-5084 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Glacier Mapping, Deep Learning, Image Segmentation, Ensemble learning, uncertainty quantification (UQ), Sentinel-2 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Künstliche Intelligenz | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
| Hinterlegt von: | Diaconu, Codrut-Andrei | ||||||||||||||||
| Hinterlegt am: | 20 Nov 2025 09:14 | ||||||||||||||||
| Letzte Änderung: | 20 Nov 2025 09:14 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags