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Abstract Glaciers play a critical role in our society, impacting everything from sea-level rise and access to
clean water to the tourism industry. Their accelerated melt represents a key indicator of the changing climate,
highlighting the need for efficient monitoring techniques. The traditional way of assessing glacier area change is
by rebuilding glacier inventories. This often relies on manual correction of semi-automated outputs from
satellite imagery, which is time-consuming and susceptible to human biases. However, recent advancements in
Deep Learning have enabled significant progress toward fully automatic glacier mapping. In this work, we
introduce DL4AGAM: a multi-modal Deep Learning-based framework for Glacier Area Monitoring, available
open-source. It includes uncertainty quantification through ensemble learning and a procedure to identify the
imagery with the best mapping conditions independently for each glacier. DLAGAM is trained and evaluated on
the European Alps, a region for which experts estimated an annual change rate of around —1.3% over 2003—
2015. We use DLAGAM to investigate the glacier evolution from 2015 to 2023 using Sentinel-2 imagery and
elevation (change) maps. By employing geographic cross-validation, our models, based on U-Net ensembles,
demonstrate strong generalization capabilities. We then apply the models on 2023 data and estimate the area
change at both the glacier and regional levels. Regionally, we estimate an area change rate of —1.90 + 1.26% per
year. We provide quality-controlled individual estimates over 2015-2023 for about 900 glaciers, covering
around 70% of the region. Debris-covered regions remain the most uncertain.

Plain Language Summary Glacier melt is accelerating. To keep track of the evolution of glacier
surface in an automated manner, we created a new tool called DL4AGAM. This tool automatically selects satellite
images suitable for delineating the glaciers and then uses an ensemble of Neural Networks to analyze the
selected images and measure changes in glacier size. By studying the glaciers in the European Alps, for which a
previous study estimated an annual change rate of —1.3% over 2003-2015, we found that they were shrinking at
an increased rate of about 2% per year over 2015-2023. This increased glacier area loss confirms the impact of
on-going climate change.

1. Introduction

Glaciers represent a critical component of the Earth system, playing various roles in our society, from sea level
rise (Edwards et al., 2021) and water security (Immerzeel et al., 2020) to tourism (Salim, 2023). Moreover,
glaciers are unique indicators of climate change (Hock & Huss, 2021), and have been classified as an Essential
Climate Variable under the Global Climate Observing System (GCOS) (Bojinski et al., 2014). Due to accelerated
melt observed over the last decades (Hugonnet et al., 2021), frequent updates of the glacier outlines inventory are
needed for change assessment, their surface being one important parameter that can now be tracked at large scale
using satellite imagery. The most recent inventory for the glaciers in the European Alps was published in 2020 by
Paul et al. (2020) based on images dating (mainly) back to 2015. Compared to the previous regional inventory for
the region, built using imagery from 2003 (Paul et al., 2011), an estimated loss of ca. 300 km? was found, which
translates into a shrinkage rate of 1.3% y~! over 2003-2015.

Another crucial indicator of a glacier's “health” is its Mass Balance (MB), defined as the total sum of all the
accumulation (e.g., snow, freezing rain, avalanches) and ablation (e.g., melting, calving, sublimation) across the
entire glacier over a certain period (e.g., a year). To estimate it, one common approach is through Digital
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Elevation Model (DEM) differencing. This involves co-registering two DEMs and calculating the elevation
difference between them, that is, the volume change. By making certain density assumptions, this volume change
can then be converted to mass change, a technique known as the geodetic method (Berthier et al., 2023). During
this process, it is also essential to account for potential changes in glacier area, especially when calculating the so-
called specific MB (total mass balance per unit area). Many studies assume here a constant area and rely on single-
dated glacier outlines (Berthier et al., 2023). However, this assumption can introduce significant biases, partic-
ularly if there has been considerable glacier shrinkage between the DEM acquisitions, with errors reaching up to
19% (Florentine et al., 2023).

Building a glacier inventory requires intense manual editing, as standard automated mapping methods (e.g., band-
ratio thresholding) fail in many cases, for example, for debris-covered glaciers (Paul et al., 2013). The presence of
debris makes glacier mapping a challenge even for experts, where the interpretation can be subjective, sometimes
leading to errors in the order of 10%—20% for small glaciers (Paul et al., 2020). This makes the glaciers in the
European Alps particularly challenging, as around 16.4% of the glacierized area is estimated to be debris-covered
(Herreid & Pellicciotti, 2020), much higher than the globally estimated fraction of 7.3%. For the glaciers in the
Swiss Alps, which represent approximately one-half of the glacierized area of the European Alps, Linsbauer
et al. (2021) estimate 11% debris-coverage. However, despite having a significant debris-coverage fraction
compared to other regions, the fraction of clean ice remains significantly higher. Therefore it is worth investi-
gating whether glacier area change rates could be accurately estimated using the standard band-ratio thresholding,
which we analyze in this study.

A promising approach toward fully-automated glacier mapping has relatively recently evolved, based on Deep
Learning (DL) models. One major advantage of these models lies in their capacity to ingest multiple data mo-
dalities and automatically extract the necessary features. Xie et al. (2020) were the first to employ a fully
convolution neural network on this task, showcasing the potential to map debris covered glaciers. Since then,
many other methods have been proposed, for example, Xie et al. (2022), Tian et al. (2022), Peng et al. (2023),
Thomas et al. (2023), Maslov et al. (2025) (see Diaconu, Heidler, et al. (2025) for a detailed overview of the
existing works). However, to the best of our knowledge only two studies have investigated whether these DL-
based methods can be used for glacier area change assessment. Roberts-Pierel et al. (2022) trained a segmen-
tation model to detect the glaciers in Alaska and then apply it on biannual image composites from Landsat over
1985-2020. They estimated a change of 8,425 km? (—13%) from a total initial area of 64,077 km?, the equivalent
of an annual rate of —0.37% y~!. Rajat et al. (2022) performed a similar analysis for a small Himalayan region
(Himachal Pradesh), also based on Landsat imagery, and estimated that glaciers in this region shrank from a total
of 4,027 km? in 1994 to only 2198.5 km? in 2021, that is, an annual rate of —1.68% y~'. Our current work
continues on this line of research, focused on the European Alps, and makes the following contributions:

¢ We build a Deep Learning-based automatic framework for Glacier Area Monitoring (DL4GAM), which
includes uncertainty quantification through ensemble learning and a procedure to automatically identify the
imagery with the best mapping conditions independently for each glacier. DLAGAM is available open-source
at https://github.com/dcodrut/dl4gam_alps.

¢ Werelease the curated and processed training data set, ready to be used by other Machine Learning researchers
and glaciologists, together with the predictions of DLAGAM which can be visualized at https://dcodrut.github.
io/dl4gam_alps.

* We assess the glacier area change for the European Alps over recent years (2015-2023), highlighting the
benefit of using elevation change maps as complementary inputs for the DL models to further improve the
mapping of debris-covered areas. At the same time, we acknowledge that the DL-based predictions also have
limitations and may not yet meet the quality standards expected for glacier inventory production without
additional corrections.

2. Data
2.1. Optical Data

To estimate glacier area changes, we collected two Sentinel-2 images for each glacier, as far in time as possible (to
increase the signal-to-noise ratio). To download the data independently for each glacier we used the geedim
(Leftfield Geospatial, 2021) Python library. The first image is always from the same year as in the glacier
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Table 1 inventory we use to obtain the training labels (details in the next section). For
Glacier Inventory Description the second image, we decided to use the year 2023, as currently, this is the
S Count Aren Smostt' reczerlltzilear with good glacier mapping conditions (more details in
ection 2.1.2).
2015 3,063 (69.7%) 1420.1 km? (78.6%)
2016 1,260 (28.7% 367.8 km? (20.4%
( ) e ( ) 2.1.1. Data Matching the Glacier Inventory (ca. 2015)

2017 72 (1.6%) 18.0 km? (1.0%)

All 4,395 1805.9 km? Our analysis is based entirely on the glacier inventory built by Paul

Note. Number of glaciers and their total area, separated by the imagery
acquisition year, based on the inventory from Paul et al. (2020), which is used
for training and evaluating our models. The last row, in bold, shows the

regiowide totals.

et al. (2020) for the European Alps. The inventory was produced using
(mainly) Sentinel-2 images by manually correcting the band ratio thresh-
olding method results, using the Red and Short-Wave InfraRed (SWIR)
bands. The final product contains 4,395 glaciers > 0.01 km?, covering a total
area of 1805.9 km?. The authors aimed to use mainly imagery from August
2015 whenever the mapping conditions were satisfactory, that is, cloud-free
and without seasonal snow. However, when this was not possible, they employed imagery from 2016 or, in
some cases, 2017 (see Table 1 for details). For simplicity, throughout the text we will consider 2015 when
referring to the inventory date. In the particular cases where more clarity is needed, we will use “inventory” years
to refer to the exact dates.

Since we mainly rely on Sentinel-2 data, which comes at a 10 m Ground Sample Distance (GSD), we decided to
drop glaciers smaller than 0.1 km?, which corresponds to having at least 1000 pixels. Even if some of the small
glaciers are still detectable, we will face difficulties when estimating the area change since the signal is probably
dominated by noise.

Moreover, while visualizing our preliminary results, we observed that some glaciers still have poor-quality
imagery, mainly because of cloud cover, despite being manually selected by the experts who built the in-
ventory (Paul et al., 2020). This issue is due to choosing the best data at the sub-regional level, not per individual
glacier. To address this issue, we decided to impose a maximum cloud/shadow coverage of 30% relative to the
surface of the glacier with a 50 m buffer around it (to make sure we increase the chances that the edges are visible),
computed using geedim (Leftfield Geospatial, 2021). Additionally, we identified a few glaciers with too much
seasonal snow or completely covered in cast shadows. To avoid discarding all of them, we first tried to find
imagery with better mapping conditions while keeping the same year. Since we had to visualize all the glaciers
during this process, we identified cases where we could find better data for some glaciers that already had
satisfactory ones. Ultimately, we manually removed 53 glaciers and replaced the imagery of 157 (40 that
otherwise would have been removed, plus another 117 because the data was better). The spatial extent of the

6°E 7.5°E 9°E 10.5°E 12°E 13.5°E
47.5°N $la7.5°N
47°N 47°N

46.5°N — ]46.5°N
46°N 46°N
45.5°N 45.5°N
45°N 45°N
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Figure 1. Overview of the study region. The figure shows the outlines of the glaciers included in our study (n = 1593, see also
Table 2) based on the inventory from Paul et al. (2020), together with the corresponding countries (background: Copernicus
GLO-30 DEM hillshade).
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Table 2 glaciers and the statistics of the final data set are shown in Figure 1 and

Data Filtering Steps

Table 2, respectively. Note that we still cover more than 93% of the total

Step

Count Aren glacierized region despite including only ca. 36% of the glaciers.

Before filtering

After filtering by area (> 0.1 km?)

After manual quality check

1646 (37.5%)  1706.2 km? (94.5%)
1593 (36.2%)  1684.7 km? (93.3%) We aimed to collect the most recent data to increase the length of the covered

4,395 1805.9 km?
2.1.2. Recent Data (2023)

Note. Number of glaciers and their total area after filtering, first by imposing
a minimum area of 0.1 km?, then by manually removing the glaciers with

period. For 2024, however, heavy snowfall in early September made the
glacier mapping conditions unsuitable, while the data from late August still

poor-quality imagery (for which alternative dates in the same year could not shows some seasonal snow. This is also supported by the data from the

be found).

Glacier Monitoring service in Switzerland (GLAMOS), which shows much
less negative glacier mass balances for 2024 compared to, for example, 2022
or 2023, with some glaciers being close to equilibrium (GLAMOS, 2024).

According to the GLAMOS data, 2023 was a strong melt year (GLAMOS, 2024), which makes the mapping
conditions more favorable. This allows a more relaxed acquisition time window, increasing the chance of having
multiple good-quality images per glacier. Moreover, since 2017, two Sentinel-2 satellites have been available, and
therefore, the amount of data available in 2023 is greater compared to earlier years. Across all glaciers, if
considering all the Sentinel-2 tiles with less than 75% cloud coverage from 2023-08-01 to 2023-10-15, we obtain
~30 k candidate images, significantly more compared to 2015 or 2016, with ~10 k and ~15 k candidates,
respectively.

To ensure an efficient image selection process, we employed an automated pipeline that incorporates the
following steps:

1. We acquire all the images from 2023-08-01 until 2023-10-15, independently for each glacier, but only
considering tiles with less than 75% cloud coverage. We include a buffer of 1.33 km around the glacier outline
which will be needed when sampling the training patches (detailed in Section 3.4). The resulting 30 k
candidate images span 357 unique Sentinel-2 tiles. On average, each glacier is covered by around 18 images
(range: 9 to 25, due to orbital overlaps).

2. After clipping each image to the buffered glacier extent, we compute four scores:

(a) The percentage of valid pixels within the scene (to exclude images where the glacier lies near a tile boundary)

(b) The cloud coverage percentage (including cloud shadows) over the glacier surface plus a 50 m buffer;

(c) The average Normalized Difference Snow Index (NDSI), using the cloud-free non-glacier pixels within a
50 m buffer;

(d) The average albedo, using the cloud-free glacier pixels plus a 50 m buffer, computed with the following RGB-
based approximation: albedo = 0.5621-B + 0.1479-G + 0.2512-R + 0.0015 (Wang et al., 2016).

3. For each glacier, we keep only the images with more than 90% valid pixels and less than 30% cloud coverage.
This leaves ~17 k candidates (i.e., around 10 per glacier) across 282 unique tiles.

4. We sort the rest by cloud coverage and, separately, by the NDSI, after we round these two metrics to the nearest
integer percentage. Based on the position in the sorted list, an image will get two scores (1 to n), one for each of
the two criteria. Finally, the two scores are averaged and the images are sorted based on this. If two images get
the same final score, the estimated albedo (without any rounding) is used as a tie-breaker, choosing the image
with the smallest albedo value.

With this procedure, we aim to minimize both the amount of clouds and the amount of snow, so we give equal
weight to these two criteria, the sorting-based scores being used as a normalization step. Therefore, we rely on the
assumption that for each glacier, there is at least one image with good mapping conditions. We then aim to retrieve
the best image with our procedure, the advantage of which is that we don't have to set absolute thresholds. We
visualized the selected images (n = 1593), and with minor exceptions (mainly caused by bad-quality cloud
masks), the overall quality was good. To further validate the procedure, we also ran it for the same years as the
inventory ones, to check whether the automatically selected images match those from our 2015 data set and found
an agreement in more than 98% of the cases (details are provided in the Supporting Information S1).
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To validate the temporal generalization capabilities of our models, we built a small (reference) data set for 2023,
consisting of 130 glaciers, which we manually delineated using very-high resolution data from swisstopo (2024a,
2024b) (details are provided in the Supporting Information S1).

2.2. Auxiliary Data
2.2.1. Surface Elevation

One of the major challenges in glacier mapping, assuming we already have good-quality imagery, is posed by
debris-cover. The percentage of debris can vary significantly, with some glaciers being completely covered. Since
it is difficult to distinguish the parts of the glacier covered by debris from the surrounding terrain, a DEM is
usually provided as input (Maslov et al., 2025; Peng et al., 2023; Thomas et al., 2023; Tian et al., 2022; Xie
etal., 2020, 2022). This is based on the assumption that there is a link between elevation and debris coverage (e.g.,
there is a much higher chance of having debris at the tongue). Additional features extracted from DEM are
presented in Section 3.1.

As data source, we use the freely available Copernicus DEM GLO-30 (Release 2023_1), with a 2010-2015
acquisition phase, at a 30 m GSD (Copernicus - ESA, 2023). We also performed some experiments with the
EEA-10 version, which provides 10 m elevation data for European countries but with restricted usage access.
Since we did not observe any significant improvement, we will rely on the GLO-30 version. Note that the same
DEM, along with the features derived from it, will be used for both the 2015 and 2023 imagery due to limitations
in data availability. However, we expect that although the surface may lower over time, the relative topographic
patterns remain stable enough to be informative. Therefore, we assume that the features derived from the DEM are
still representative of both the glacier surface and adjacent terrain, capturing the stable topographic context of the
glacierized valleys. We also note that the DEM-derived features play only a supporting role in the model, and our
experiments indicate that the model's overall performance is not strongly dependent on them.

2.2.2. Surface Elevation Change

For the first time, we investigate the use of elevation change (dh/dt) maps as complementary input data to alleviate
the problem posed by the presence of debris. Even though a thick enough layer of debris reduces the glacier melt
(Rounce et al., 2021), almost all the glaciers in the world lost volume over 2000-2019 (Hugonnet et al., 2021).
Consequently, an dh/dt map could also capture the debris-covered portions when contrasting them with the
surrounding topography, where no change is expected. Based on the product of Hugonnet et al. (2021), we use the
2010-2014 and 2015-2019 dh/dt maps as additional inputs to the 2015 and 2023 rasters, respectively.

3. Methodology
3.1. Pre-Processing

We use all the 10 m bands (i.e., R, G, B and Near-InfraRed (NIR)) and one of the SWIR bands (i.e., B11). The
latter helps distinguish snow and ice from clouds and is also used for calculating the NDSI. Since the SWIR band
comes originally at 20 m resolution, we resampled it to 10 m using bilinear interpolation to align it the other input
bands.

We also derived two sets of features following previous studies on glacier mapping (Peng et al., 2023; Thomas
et al., 2023; Xie et al., 2020):

¢ Three from the optical bands: NDSI, Normalized Difference Water Index (NDWI) and Normalized Difference
Vegetation Index (NDVI).

o Five from the DEM: slope (Horn, 1981) and aspect (using its sine and cosine as input), terrain ruggedness
index (Riley et al., 1999), planform and profile curvatures (Zevenbergen & Thorne, 1987). All are computed
using the xDEM Python library (xdem contributors, 2021).

To summarize, we obtain a 16-dimensional input after stacking all the features:

« Five optical bands + three derived features
¢ One DEM + six derived features
¢ One elevation change map.
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longitude

approximative percentage from the total glacierized area

cross-validation 20% 20% 20% 20% 20%
iteration fold 1 fold 2 fold 3 fold 4 fold 5

20% test

aggregated test predictions (n = 1593)

Figure 2. Cross-validation scheme with a geographic split. The figure displays how we split the data set iteratively (five-fold
cross-validation) into training-validation-test folds geographically (using the longitude of the glaciers' centroids). To ensure
no overlap between training and testing, the validation fold is used as a buffer between them. Note that the split into the three
sub-sets is based on the glaciers' areas. Therefore, the number of glaciers in the test fold varies significantly across iterations
(see Table 3). Finally, once the 10 models are trained, by collecting the inferences on the test folds, we obtain one estimate for
each of the 1593 glaciers considered in our study.

3.2. Segmentation Model

Our method is based on the U-Net architecture (Ronneberger et al., 2015), using the implementation from the smp
library (Iakubovskii, 2019). U-Net is a Convolutional Neural Network (CNN) architecture specifically designed
for image segmentation tasks. Its name is based on its U-shaped architecture, which consists of a contracting path
(encoder, for which we use another well-known CNN as feature extractor, i.e., ResNet34 (He et al., 2016)) and an
expansive path (decoder). The contracting path captures context information through a series of convolutional and
pooling layers, while the expansive path upsamples the features to generate a detailed segmentation map. A key
feature of U-Net is skip connections, which allow the network to preserve spatial information and fine-grained
details. This architecture has proven highly effective in many Computer Vision tasks, including in previous
studies on glacier mapping (Xie et al., 2021).

3.3. Geographic Cross-Validation

Given that the models we train are not error-free, we want to at least increase the chances that these errors are not
significantly affecting our glacier area change rate estimation. One way to support this is by using the inferences
on both the 2015 and 2023 images, such that, at least, the systematic errors cancel each other when computing the
difference. Furthermore, to increase the chances that the predictions are not biased toward the inventory, as it is
also used for training, we will only refer to the images falling into the testing subset. However, since our final goal
is to provide glacier area change rates for as many glaciers as possible, ideally covering the entire European Alps
region, using only the testing subset is insufficient. To address this, we train in a five-fold cross-validation scheme
with a geographic split (see Figure 2). This not only prevents any data leakage
but also allows us to obtain a test inference on all the glaciers covered in the
data set. The statistics corresponding to the test fold glaciers of each cross-
validation iteration are shown in Table 3.

Table 3
Geographic Cross-Validation

Subregion Lon range #Glaciers Area
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R,
R,
R
Ry
Rs

10.7°-13.6°E
8.4°-10.8°E
7.8°-8.4°E
7.3°-7.9°E
6.0°-7.3°E

426 (25.9%)
401 (24.4%)
176 (10.7%)
236 (14.3%)
354 (21.5%)

322.9 km? (18.9%)
343.1 km?* (20.1%)
342.6 km? (20.1%)
337.9 km* (19.8%)
338.2 km? (19.8%)

Note. The table shows the statistics corresponding to the test fold of each
cross-validation iteration (see Figure 2 for a graphical description of the
splitting procedure).

3.4. Training Scheme

We employ a custom patch-based sampling strategy to ensure that our model
captures the relevant features and avoids being biased toward the majority
class (i.e., non-glacierized areas). For each glacier stack (of varying sizes), we
generate all possible patch locations using a patch size of 256 X 256 pixels
(i.e., 2.56 km X 2.56 km) and a sampling stride of 32 pixels in each direction.
From these, we keep only the patches that have the center pixel within a 50 m
buffer of the glacier. Additionally, to guarantee representation for each
glacier, we include one patch centered on the glacier centroid. Depending on
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the cross-validation fold, this results in 15,160-15,739 patch locations. These locations are stored and used to
extract patches on-the-fly during training (in batches of 16), after randomly subsampling them to approximately
half the original number (see Section 3.5.3).

We train the models using PyTorch (Paszke et al., 2019) and PyTorch Lightning (Falcon & The PyTorch
Lightning team, 2019). We use the focal loss (Lin et al., 2020), which was found to have a positive impact on the
model's calibration (Mukhoti et al., 2020). Pixels without optical data or covered by clouds/shadows are excluded
when computing the loss. The models are trained using Adam (Kingma & Ba, 2015), with a starting learning rate
of 1e—4. Before inputting the data to the network, the slope (in degrees) is divided by 90, and all the variables that
are not already in the unit scale (i.e., the optical indices and the aspect's (co)sine) are normalized to zero mean and
unit standard deviation using the statistics of the training fold glacier stacks.

We initialize the ResNet34 encoder of the U-Net with the ImageNet weights (He et al., 2016) and then train each
model for 30 epochs. We save the model with the best validation performance measured as follows: for each
glacier in the validation fold, we compute the average Intersection Over Union (IOU) over all its patches and then
compute the overall IOU average, weighted by glacier area (favoring larger glaciers). While uniform patch
sampling would implicitly give more weight to larger glaciers, our glacier-centric sampling strategy introduces
some imbalance across the region. This explicit weighting step helps restore the original distribution of glacier
areas, making the metric more representative of total ice coverage and more comparable across experiments with
different sampling settings.

3.5. Glacier Area (Change) Estimation

The first step for producing change estimates is to process the predictions from the segmentation models and
estimate glacier areas. We then evaluate the performance of our models using various metrics w.r.t. to both the
2015 inventory and our small reference data set for 2023. Because debris cover, shadows, and snow conditions
can lead to erroneous delineations, we quantify the uncertainty of each prediction using an ensemble of (10)
models. These uncertainties are then used to identify and exclude unreliable results. Finally, we scale up the
filtered area change rates to the full glacier inventory, obtaining a robust assessment of regional glacier area
change.

3.5.1. Glacier Segmentation and Area Estimation

Once the models are trained, we want to use them to estimate the area of each glacier, first in 2015 and then in
2023. We build (in memory), glacier by glacier, all the patches with a sampling step of 32 pixels (so doubling the
overlap used in training). Then, all these patches are mosaicked while the overlapping predictions are averaged. If
some pixels were masked out because they had missing data or were covered by clouds/shadows, we fill them in
using the average predicted probability of the closest 30 pixels. A binary mask is then computed by applying a
threshold of 0.5 on the pixel-wise probabilities. Finally, these binary masks are used to estimate the glacier areas.

Paul et al. (2020) estimates that the uncertainty of the glacier outlines is between one and two pixels (i.e., 10 and
20 m, respectively), depending on the degree of debris cover. Thus, since we are interested in glacier-wide area
change and not in “discovering” new glaciers in the region, we only use the predictions on the pixels within the
inventory outlines plus a 20 m buffer. Note that a standard buffer may then include the pixels of another neighbor
glacier but these regions are ignored, that is, equivalent to keeping the same ice divides. We also use the same
buffer in 2023, thus assuming that glaciers do not grow, which is expected given the recent negative estimates for
mass balance or volume change (GLAMOS, 2024; Hugonnet et al., 2021). In this way, we can track the area of
each glacier individually, even if some glaciers may disintegrate into multiple parts over time. Finally, for each
glacier, the difference between the area estimation for 2023 and the one for the inventory year is divided by the
number of years in between (i.e., 8, 7 or 6 years), to obtain a glacier-specific area change rate. An illustration of
the entire process for a single glacier is shown in Figure 3.

3.5.2. Performance Evaluation Metrics

We first use the standard evaluation procedure from Computer Vision, that is, computing various performance
metrics over the testing samples and reporting their average. We first compute the number of True Positives (TP),
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Figure 3. DLAGAM exemplified for a glacier (Tribolazione, IT - 45.52°N, 7.28°E). Note: we show only the RGB bands
(Copernicus Sentinel-2) and we clipped the extreme 1% values for the dh/dt, planform, and profile curvatures. The inset in
the 2015 image shows a close-up on an area where the prediction and the inventory disagree (probably due to snow-cover).
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False Positives (FP), True Negatives (TN), and False Negative (FN). For the FP, we consider only a 50 m buffer
around the reference outlines to reduce sensitivity to irrelevant FPs far from glacierized areas. We then derive the
following metrics:

e Accuracy = (TP + TN)/(TP + FP + TN + FN)

o IoU=TP/(FP + TP + FN)

e Precision = TP/(TP + FP)

e Recall =TP/(TP + FN)

e F,=2-TP/(2-TP + FP + FN) (i.e., the harmonic mean of Precision and Recall)

In addition to the standard metrics above, we report a second set of more interpretable, area-based metrics, which
will be aggregated across all the glaciers of a similar size:

¢ Positive area: P = TP + FN, that is, the true glacierized area according to the inventory outlines.

¢ True Positive Rate (TPR): Same as recall, that is, the proportion of the reference glacier area correctly
predicted.

o False Negative Rate (FNR): FNR = FN/P =1 — TPR, that is, the proportion of the reference area that
was not captured (omission rate).

o Negativearea: N = FP + TN, thatis, the area outside the reference outlines (within a 50 m buffer), used for
computing false positives.

« False Positive Rate (FPR): FPR = FP/N, that is, the proportion of non-glacier area incorrectly labeled as
glacier (commission rate).

o Relative uncertainty: (FN + FP)/P, a normalized error metric representing the total segmentation error
magnitude relative to the true glacierized area.

3.5.3. Uncertainty Quantification

Estimating the uncertainties in DL models remains a challenging but highly important task. Uncertainty estimates
are necessary for assessing the reliability of the predictions before interpreting them. Initially used in Random
Forests (Breiman, 2001), one of the classical methods that remains a robust approach is bagging, that is, training
multiple models on a different sample of the original data set and ensembling them. The average predictions
usually also outperform the individual members, but here we are mainly interested in the spread of the ensemble,
which provides a measure of predictive uncertainty. This idea has also been exploited in Deep Neural Networks
by Lakshminarayanan et al. (2017), showing that ensembles provide high-quality uncertainty estimates and
became a gold standard in probabilistic machine learning (Wimmer et al., 2023). For a broader overview of
ensemble methods in deep learning, we refer the reader to Gawlikowski et al. (2023), who highlight their
widespread use and strong empirical performance in uncertainty estimation, and also discuss methods for making
ensembles more efficient.

We built an ensemble of ten U-Nets for each cross-validation split. Before training, we sample 7,488 patches (i.e.,
468 batches) from the corresponding training set, which is approximately half of all the generated ones, to in-
crease the diversity among the ensemble members. Additionally, the decoder and segmentation head weights are
re-initialized with a different random seed. Once the models are trained, we will have 10 predictions for each
pixel. To ensure that the predicted probabilities are well-calibrated, we applied temperature scaling (Guo
et al., 2017) to each ensemble member, using pixel-wise predictions and ground truth labels from the validation
set. The optimal temperature for each model was chosen to minimize the Expected Calibration Error (ECE),
which we compute and report. Based on these calibrated values, we will first compute the average, which will be
used as the final prediction, and their standard deviation, which will be used to derive the lower and upper bounds
of the glacier area.

Following the work of Tollenaar et al. (2024), we initially defined area uncertainty by subtracting from (or adding
to) the ensemble average prediction one standard deviation, then applying a fixed 0.5 threshold to compute the
lower and upper bounds. However, to address limitations of this heuristic—particularly in cases where ensemble
members may exhibit low spread but still be uncertain—we extended it by incorporating an area-level calibration
step. First, we introduce a glacier-specific parameter 7 € [0,0.5] and compute the glacier area bounds as a
function of 7 as follows:
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© Ap = anXiep,, Ui —a) 21 -1,
. Aub = aPXziEBgom 1[(,[/!1 + 5,’) > T],

where u; and o; are the ensemble mean and standard deviation at pixel i, 7 is the calibrated threshold, and B,
denotes the set of pixels within a 20 m buffer around the target glacier outline (same as at inference time),
excluding any pixels belonging to adjacent glaciers. The factor a, accounts for the area of a single pixel (i.e.,
1 x 10™* km? for Sentinel-2). This works as follows: by setting the lower bound threshold to 1 — 7 and the upper
bound threshold to z, we allow the bounds to adjust asymmetrically to the ensemble predictions: if the confidence
islow (i.e., p is close to 0.5), a small standard deviation is sufficient for a pixel to cross the threshold; conversely, a
high-confidence prediction (with ¢ near O or 1) paired with high ensemble disagreement (i.e., a large o) also
makes it easier to cross the threshold. This approach ensures that both the central prediction y and its uncertainty &
are appropriately balanced in determining the bounds. The optimal value of 7 is then selected to achieve a target
coverage of 68%, corresponding to the probability mass within one standard deviation under a normal distri-
bution. This means that the true glacier area is expected to fall within the predicted lower and upper bounds (i.e.,
the 1-standard-deviation confidence interval) in 68% of the validation cases (we optimize 7 on the glaciers from
the validation set for each cross-validation iteration). This method offers two main advantages: (a) it decouples the
bounds from a fixed decision threshold, allowing dynamic calibration in cases where all ensemble members
predict 0.5 (i.e., no spread), thus preventing the underestimation of uncertainty; and (b) it calibrates area-level
uncertainty in a data-driven way, ensuring that the resulting bounds behave as proper confidence intervals un-
der Gaussian assumptions.

To select 7, we sweep from 0 to 0.5 with a step of 0.001. For each candidate 7, and for each glacier in the validation
set, we compute the corresponding prediction interval [Ay,, A, ] using the equations above. We then choose the 7
that yields 68% empirical coverage of the true areas. Under our five-fold geographic cross-validation, this pro-
duces five fold-specific thresholds, which we apply to the held-out test folds to assess calibration performance.
When aggregating all test-fold intervals, however, we observed an overall under-coverage of around 9%, indi-
cating that a single 7 per fold does not generalize perfectly across subregions. To address this issue, we replaced
the fixed-z approach with a glacier-specific threshold estimated via quantile regression. Noting that the previously
described procedure is equivalent to (a) computing, for each validation glacier, the maximum z that still covers its
true area, then (b) taking the 0.32 quantile of those values, we fit a quantile-regression model at g = 0.32. We also
use a logit link to enforce 2 - 7 in [0, 1]. The model predicts = from four predictors (plus an intercept):

» mean of the pixel-wise ensemble predictions y;

* root-mean-square of the Bernoulli variance y; - (1 — ;4,-)

¢ root-mean-square of the ensemble pixel-wise standard deviations o;
¢ logarithm of the predicted area (using a 0.5 threshold).

We fit one such model per validation fold and then predict glacier-specific = values for the corresponding test fold.
These thresholds are also applied to the 2023 inferences.

Finally, when computing the 2015-2023 area change rates, we do so on a glacier-by-glacier basis and assume the
uncertainties from the two epochs are independent, summing them in quadrature. We acknowledge that this
assumption contradicts our earlier suggestion (in Section 3.3) that systematic errors might cancel when comparing
2015 and 2023 predictions. A proper analysis of temporal error correlation would require an expert-made
glacier inventory for 2023, which is currently unavailable. We therefore leave this for future work. That said,
assuming independence leads to conservative uncertainty estimates—i.e., potentially overestimating the actual
uncertainty—which we consider preferable in the absence of a definitive ground truth.

3.5.4. Quality-Control Filtering

While our method is not intended to produce a new glacier inventory, it is well-suited for change assessment,
where relative temporal consistency is more critical than absolute per-image accuracy. To further reduce the risk
of consistent misclassification (e.g., missing a glacier in both years), we incorporate ensemble-based uncertainty
filtering to automatically discard predictions with low confidence—trading some spatial coverage for increased
robustness.

Given the two area estimates, we can compute the corresponding annual area change rate for each glacier.
However, since DLAGAM can still fail to identify debris-covered areas, we apply some filtering on the estimated
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change rates. As a first step, we use DLAGAM's uncertainties as follows: we impose that the ratio between the
estimated annual area change rate and its corresponding uncertainty—i.e., Signal-to-Noise Ratio (SNR)—is
larger than 1. As a second step, we try to eliminate the cases where DL4AGAM fails to identify a glacier and for
which the ensemble-based uncertainty did not capture the error, which can still happen especially for (small) fully
debris-covered glaciers. As such, we impose a minimum recall of 90% for 2015 to avoid such cases. We then
assume that the performance of the models will remain similar for 2023, an assumption that should be met since
we followed a strict evaluation strategy using the geographic cross-validation split, and therefore the 2015-based
evaluation metrics should also be representative for 2023.

3.5.5. Regional Extrapolation

To avoid any bias introduced by filtering out the glaciers smaller than 0.1 km?, we first upscale the estimated rates
to the entire inventory using a second-order polynomial fit weighted by the estimated uncertainties (details in the
Supporting Information S1).

3.6. Band-Ratio Thresholding

For building the inventory used in our study, Paul et al. (2020) initially computed the R/SWIR ratio and applied a
manually selected threshold such that good results are obtained for the shadowed areas, with the risk of making
false detections. To reduce them, a second threshold on the Blue band was used, as it has been shown in a previous
study that this reduces misclassified rock in shadow (Paul et al., 2016). We investigate whether applying this
classical method separately on the 2015 images and the 2023 ones would provide similar glacier area change
rates.

Instead of manually choosing thresholds for each day or S2 tile, such that they are adjusted to scene conditions
(Paul et al. (2020)), we aim to maximize the performance of this method by automatically selecting the best values
for the two thresholds using a simple grid search over [0.1, 5.5], with a 0.1 step, and [0, 1500], with a step of 25,
respectively. The best threshold pair is chosen similarly to the validation phase of the DL models, that is, by
maximizing the average IOU (see Section 3.4). Furthermore, we implemented two versions of calculating these
thresholds:

1. (sub)regional band-ratio method: for each of the cross-validation splits, we combine all the glaciers from the
training and validation folds and choose the pair that provides the best IOU (weighted by the glacier areas). We
thus end up with five threshold pairs, one for each cross-validation iteration.

2. Glacier-wise band-ratio method: instead of choosing a single parameter of the entire sub-region, we find the
pair that yields the best average IOU for each glacier independently.

4. Results and Discussion
4.1. Model Performance Evaluation

Before extracting the glacier areas based on our predictions, we first evaluate the quality of the predictions from
the five U-Net ensembles using standard metrics from Computer Vision segmentation problems (introduced in
Section 3.5.2). The results are displayed in Table 4, separately for each subregion in the geographic split. An F;
around 90% on average indicates a good quality of the predictions, and therefore, we can trust them to further
compute the total glacier areas.

4.2. Glacier Area (Change) Estimation

Before estimating the corresponding annual change rates, we first investigate how well our area estimates match
both the 2015 inventory and our 2023 reference data set. A size-dependent analysis provides detailed insights into
the strengths and limitations of our method. Table 5 summarizes the area estimation performance metrics grouped
by glacier size class. Our results indicate that relative omission errors tend to be larger for smaller glaciers—
reflecting higher sensitivity to boundary misclassification—whereas the false positive rate (commission error)
shows the opposite trend.

For our 2023 reference data set, we observe a slight deterioration in recall (TPR), which may be explained by our
inclination to be more inclusive when delineating glaciers in the very-high-resolution imagery. The FPR
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Table 4
Segmentation Performance Metrics
R Accuracy (%) ToU (%) Precision (%) Recall (%) F; (%)
R 85.2 +10.8 75.4 £20.5 98.1+ 3.2 76.7 +20.9 84.5 +16.8
R, 90.6 + 7.9 85.7+13.2 943 + 4.8 90.6 + 13.8 91.8 £ 9.7
R; 924+ 55 889+ 83 94.1 + 54 9.1+ 6.8 939+ 52
Ry 91.8 + 8.0 88.1 +12.9 945+ 4.8 92.7 £ 12.7 933 + 8.7
Rs 885+ 9.4 82.0 + 16.8 944+ 53 86.5 + 17.9 89.1 + 13.2
All 89.1 + 9.3 82.8 + 16.6 953+ 49 86.7 + 17.5 89.7 + 12.8

Note. Glacier-level testing results for each of the five geographic cross-validation splits (see Table 3), evaluated using
standard segmentation metrics. We report the mean and one standard deviation across glaciers within each corresponding
subregion.

decreases slightly for the 2023 data, likely due to the larger buffer of deglaciated pixels (outside the 2015 outlines
but within the 50 m buffer).

It is important to note that the inventory outlines themselves are not perfectly accurate. As mentioned in Sec-
tion 3.5.1, Paul et al. (2020) estimated an uncertainty of 1-2 pixels, and our inference pipeline allows the model to
predict glacier presence slightly beyond the inventory outlines (up to +20 m). As a result, part of what is labeled
as false positive (FP) may, in practice, fall within the plausible glacier extent. Similarly, some apparent boundary
errors may reflect differences in interpretation rather than true misclassification, since pixels at these edges often
contain a mixture of glacier ice and rock—especially at 10 m resolution. These effects should be considered when
interpreting pixel-level error metrics, as they may overestimate the actual disagreement. For example, when
focusing only on a 20-50 m buffer, the FPR shows noticeable differences, as detailed in Table 7.

Next, a glacier-level evaluation is made in Figure 4, showing a Mean Absolute Percentage Error (MAPE)
of 12.51% for 2015, followed by 15.95% for 2023. Overall, more than half of the results are not at the level

Table 5
Area Estimation Performance Metrics

Sizeclass # P (km?) TP (km?) TPR(%) FN(km?) FNR (%) N (km?) FP(km?) FPR (%) +FP(%)
Relative to the 2015 inventory (Paul et al., 2020)

[0.1,02) 509 723 58.7 81.1 137 18.9 57.7 48 8.3 25.6
[02,05) 504 1590  137.6 86.5 215 13.5 89.3 7.1 79 17.9
[0.5,1) 235 1625 1464  90.1 16.1 9.9 65.9 5.8 8.7 134
[1,2) 175 2455 2298 93.6 15.7 6.4 72.6 72 9.9 9.3
[2,5) 101 3148 2986 9438 16.2 52 68.0 7.0 103 74
[5,10) 48 3229 3101 96.0 12.9 4.0 55.5 7.0 12,6 6.2
[10,20) 16 2118  204.1 96.4 7.7 36 31.0 47 152 59
>20 5 1955 1906 975 49 25 25.1 37 14.6 44
All 1593 16844 15758 93.6 108.6 6.4 4652 473 102 93
Sz 130 1671 1614 966 5.7 34 38.6 5.07 13.1 6.4

Relative to our 2023 reference data set (Syy3)

8023 130 151.8 143.4 94.4 8.4 5.6 539 5.10 9.5 8.9

Note. We report several metrics that assess how suitable the final ensemble-averaged predictions are for glacier area esti-
mation. Metrics are grouped by glacier size class, with the final row reporting aggregated results across all inventory glaciers.
For each class, the values, expressed as areas, represent the sum over all glaciers in that class. Finally, Syq,3 represents the set
of 130 glaciers from our 2023 reference data set.
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Figure 4. Glacier area comparison against the inventory and our 2023 reference subset. In the upper panel we show the
relative absolute percentage errors of the DLAGAM's area estimates versus the inventory ones from Paul et al. (2020), and,
below, the results using our small reference data set for 2023. The 5% threshold is the one recommended by GCOS (Global
Climate Observing System (GCOS), 2022) as acceptable uncertainties. The text shows how many glaciers pass this
threshold. Note also the slight increase in the estimated glacier area compared to Table 5, as we now allow the model to make
inferences within the 2015 outlines + a 20 m buffer, to allow for potential errors in the inventory.

recommended by GCOS (Global Climate Observing System (GCOS), 2022), that is, 5%. However, some of these
errors are consistent over time, thus canceling out when computing area changes.

In Figure 5 we selected four glaciers (from the subset which we manually delineated for 2023) to illustrate three
sources of biases:

« Differences in scene illumination: first row and the third show an increase in the amount of ice covered by
shadows; in the first one DLAGAM manages to overcome the change, whereas in the third case it missed a
segment;

¢ Seasonal snow: second and last cases show much more snow in 2015 compared to 2023; this not only creates a
base for false positives, but the fact that the amount of snow changes over time contradicts our assumption that
errors are systematic;

o Increased debris cover: in all cases except the second the debris cover increases; if for the third case, the
models perform well, as there is enough clean ice nearby for context, in the first and last cases, the network
misses completely the debris segments.

Similar cases but with very-high-resolution data were illustrated in our previous work (Diaconu, Heidler,
et al., 2025)—see Figures 6 and 7. For future work, our automatic data selection procedure should be improved to
at least try to eliminate differences in illumination and seasonal snow. Alternatively, we could train the models
with multiple images from the same season, as a temporal augmentation. Debris cover, however, remains a
challenge, as the current results are not yet at a human annotator level.
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Figure 5. Predictions for the inventory year and our 2023 reference subset.

We selected four glaciers for which the surfaces conditions change over
time, to illustrate an important source of bias. Imagery: SWIR-NIR-R bands
from Copernicus Sentinel-2.

4.2.1. Uncertainty Quantification

As detailed in Section 3.5.3, we then derive the uncertainties in the pre-
dictions from the spread of a ten-member ensemble and the confidence of the
ensemble average, after applying two calibration steps.

At the pixel level, before calibration, the ensemble members already show
good calibration on the test set, with an average ECE of 0.96%. This
relatively low value is likely due to two factors: (a) in segmentation tasks,
many pixels are easy to predict, so the bin of very confident and correct
predictions dominates the ECE computation; and (b) the use of focal loss,
which has been shown to improve calibration (Mukhoti et al., 2020). After
calibrating each ensemble member on its corresponding validation set, the
average ECE is further reduced to 0.52%, with the maximum improvement
reaching 1.21%.

The second calibration step, intended to provide area-level confidence in-
tervals, provides a probability decision threshold (z) for each glacier. When
we aggregate the resulting intervals across all test folds (n = 1 593 glaciers),
the empirical coverage is 65.2%, slightly below the nominal 68%, with a
substantial spatial variation in 7 which indicates underlying heterogeneity
across glaciers and regions. Importantly, since the reference outlines may
themselves contain small delineation errors, the resulting uncertainties are
likely conservative. Evaluating the quality of uncertainty estimates remains
inherently difficult, as a completely error-free “ground truth” for glacier
outlines is not available.

Figure 6 displays the uncertainty buffer and computed area bounds for several
glaciers, including failure cases. It is therefore important to note that the
effectiveness of these calibrated uncertainties ultimately depends on the
quality of the underlying models. While area-level calibration step ensures
that area bounds capture errors correctly on average, it cannot account for
cases where all ensemble members are confidently and consistently wrong,
for example, due to systematic misclassification in fully debris-covered re-
gions. Such failure modes remain a limitation of our approach—and more
generally, of uncertainty quantification methods in deep learning (Ovadia
et al., 2019).

When comparing our uncertainty estimates to prediction errors with respect to
the inventory areas (Figure 7), we observe a significant Spearman correlation
of 78%, suggesting that the uncertainty magnitudes do relate meaningfully to
error. Figure 7 contains another quality assessment of our uncertainties, where
we compare them with debris areas for a subset of 288 Swiss glaciers. We use
this sample because we have access through GLAMOS to a high quality
debris-cover product, which is part of the Swiss Glacier Inventory (SGI2016),
and that roughly matches the period covered in our data set (Linsbauer
et al., 2021). We find a significant correlation (47%) but with a high spread,
suggesting that the uncertainties also be affected by other components (e.g.,
cloud/shadow coverage). Overall, we can conclude that DLAGAM's uncer-
tainty can be reliably used when interpreting the estimated glacier area change
rates.

4.2.2. Comparison With the Round-Robin Experiment From SGI2016

To illustrate the versatility of DLAGAM, we ran it for 13 Swiss glaciers from the SGI2016 inventory (Linsbauer

et al., 2021). These 13 glaciers are a subset of the 15 glaciers used by the authors in a round-robin experiment
designed to estimate the uncertainty of the product (two were dropped because one had an area smaller than
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Figure 6. Ensemble-based Uncertainty Quantification. We illustrate here, for several glaciers with different degrees of debris coverage, the process of obtaining lower
and upper bounds for the predicted glacier area starting from the ensemble's pixel-wise average prediction (second column) and its standard deviation (third column).
The titles from the last column show the inventory area (4;,,), DL4GAM's final predicted area (A,) and the corresponding 68%-CI bounds (A, and A,;,) which depend
on the estimated 7 (see Section 3.5.3). For the first glacier, which is almost debris-free, the predictive buffer is relatively narrow. For the second glacier, the uncertainty is
slightly higher, capturing well the presence of debris on the glacier tongue. For the third glacier, nearly fully debris covered, the prediction is poor and the upper bound
covers almost entirely the allowed 20 m buffer as a consequence of a very low estimated 7 (= 0.003). For the last two cases, the network misses significant parts of the
tongue and the uncertainty buffer is too small, illustrating limitations of our predictive uncertainty (we discuss them in Section 4.2.1). Imagery: Copernicus Sentinel-2.
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Figure 7. Qualitative checks of the estimated uncertainties. Panel (a) displays a comparison between the estimated relative
uncertainties (derived from the ensemble) w.r.t. to the average prediction, and the relative absolute errors w.r.t. the inventory
areas. In panel (b), we compare the uncertainties against debris percentages for a small sample of the Swiss glaciers, which
are debris-covered (i.e., > 1%) according to the inventory from Linsbauer et al. (2021). Note that we dropped a few glaciers
with very small (or zero) predicted areas, that is, n = 32 for (a) and n = 3 for (b) so we can compute the ratio. In both cases, the
(Spearman) correlation is significant.

0.1 km? and the other had the outline dated back to 2013, therefore before the Sentinel-2 era). Moreover, having
access to area estimates from five different experts provides the opportunity to evaluate the DL4AGAM's pre-
dictions against reliable ground truth by referring to the average area. Furthermore, the overall uncertainty of the
SGI2016 inventory is already lower than that of the inventory we use, estimated at around 2.5%, which is probably
a consequence of using very-high resolution (25 cm) optical data. At the same time, we can investigate whether
DL4AGAM's uncertainties match the human perceptual uncertainty, as this would also indicate a good quality of
the predictive uncertainties. Figure 8 shows the two comparisons. For eight out of these 13 glaciers we show the
predictions in the Supporting Information S1.

4.2.3. Estimation of Glacier Area Change Rates Over 2015-2023

The benefit of DL4AGAM can now be shown for 2023, for which a glacier inventory is not available yet. To
validate whether we produce reliable change rates, we compared in Figure 9 the change rates derived using the
inventory and our reference data set to those obtained using DL4GAM, by referring only to its predictions. Note
that since we did not allow our annotations to be larger than the 2015 inventory, these reference rates are always
negative. On the other hand, DLAGAM wrongly estimates positive change rates for two (debris covered) glaciers
(only one is shown in the scatter). In general, we observe that DL4GAM overestimates the changes but the overall
agreement is good (Spearman correlation: 68.9%). Furthermore, we also check whether our predicted un-
certainties do capture the observed errors and we find a prediction interval coverage of 50.8% (nominal: 68%),
which we find acceptable given that the reference values themselves have (unquantified) errors. This suggest we
can trust the uncertainties in the data filtering step, while using another recall-based one for eliminating cases like
the one in Figure 6.

The impact of the two filters is relatively small in terms of total glacier area covered but significant in terms of the
number of glaciers. Table 6 shows these coverage statistics after applying each of the two steps. Figure 6 includes
a (fully debris-covered) glacier which was filtered out by the second, recall-based, filter.

We summarize the remaining 880 annual change rates by glacier size class in Figure 11. We note that most of the
glaciers have a significantly negative change rate but with variation among glaciers, especially for the smaller
classes (although for these, the uncertainties are also relatively higher). If we then summarize the glacier area
change rates in cells of 10 km X 10 km, we can visualize how they are distributed along the Alps (see Figure 10).
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Figure 8. Comparison with the round-robin experiment from SGI2016. The figure shows a comparison between DL4AGAM
and the results of the round-robin experiment on multiple digitizations of glaciers by five experts from the SGI2016
inventory (Linsbauer et al., 2021). Panel (a) shows the accuracy of the DLAGAM predicted areas against the average across
experts, whereas (b) compares DLAGAM's estimated relative uncertainty, derived from the ten-member U-Net ensemble,
against the relative deviation of the area across the five experts.
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Figure 9. Estimated annual area change rates against the reference. We compare the relative changes in glacier area
(expressed as percentage change over the entire 8 years period) between reference measurements (using the 2015 inventory
and our small reference data set for 2023), and DLAGAM predictions from both years. The color represents the glacier area in
2015 (with a log;, transformation applied for scale and clipped to 20 km? for contrast enhancement), and point shapes denote
whether the reference change falls within the 1o uncertainty interval of the predicted change. The overlaid text box summarizes
key statistics: the total number of observations (n), the Spearman correlation coefficient between predicted and measured
relative changes, the aggregated glacier areas for 2015 and 2023 (both for reference and DL4GAM estimates), the absolute
change in area, and the percentage of reference change values within the predicted 1o range (with a nominal coverage of 68%).
Note that we dropped one outlier from our predictions (with a wrongly estimated change of +41%) for improving visibility, but
was included in the statistics.
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Table 6

Regional Coverage After Results Filtering

Step Count Area
Inventory 4,395 (100%) 1805.9 km? (100%)
Our data set 1,593 (36.2%) 1684.7 km? (93.3%)
After uncertainty-based filtering (SNR = £ > 1) 1,136 (25.8%) 1308.0 km? (72.4%)
After filtering by recall (>90%) 880 (20.0%) 1212.5 km? (67.1%)

Note. The table shows the coverage impact of the two filters (first by uncertainties, second by 2015 recall) applied on the
estimated annual glacier area change rates. Despite reducing the number of glaciers (second column) by another 400, the total
area (third column) covered by the estimates remains significant.

4.3. Region-wide Glacier Area (Change) Assessment

Since the 880 estimates cover a significant part of the total glacierized area in the European Alps (i.e., ca. 67%, see
Table 6), we can confidently produce a regional estimate. However, rather than throwing away the borderline
cases, we instead weighted the predicted area change rates by the estimated uncertainties before applying the size-
dependent model described in Section 3.5.5.

For 2015, we estimate 1796.1 + 91.69 km?, followed by 1532.6 + 146.79 km? in 2023. After taking into account
the period between the two acquisitions of each glacier, which varies depending on the exact inventory year, we
obtain a regional annual area change rate of —34.20 + 22.68 km?, that is, —1.90 + 1.26% y~!. Our estimate is
therefore more negative compared to 2003-2015, that is, around —1.3% y‘1 (Paul et al., 2020). However, this is
probably an overestimate given the biases that we discussed which would result in an overestimate for 2015 and
underestimate for 2023. For instance, if we compute the area change rate using our 2023 reference data set
(n = 130), we obtain a rate of —1.31% y~! if we use our models and —1.15% y~! if we compare the data sets
directly. Although the difference is relatively small, this confirms the risk of overestimation. The value is also
significantly smaller than what we estimate in the end for the entire region which would require further analyses.
A second, more recent expert-made inventory would be of real value in elucidating some of these uncertainties.
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Figure 10. Estimated annual area change rates (gridded). Here, we display (by color) our estimates of annual glacier area
change rates after aggregating them in cells of 10 km X 10 km based on the coordinates of the glaciers' centroids. The disks
scale with the initial glacierized area in 2015. To enhance the contrast, we only display the cells with an initial area larger than
2 km?. Country borders are shown in black (see also Figure 1), with Copernicus GLO-30 DEM hillshade in the background.
See also the Supporting Information S1 where we show the same plot but for a single glacier area size class.
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Figure 11. Distribution of glacier-specific area change rates. After splitting the glaciers into the eight different classes used by
Paul et al. (2020), we show the distribution of the corresponding annual area change rates estimated in this work. Below each
boxplot, we display the number of glaciers (n) falling into that class and the corresponding fraction (A,) of the sum of their

areas relative to the total area of 1684.7 km?.

4.4. Comparative Analysis

4.4.1. Comparison to Clean-Ice-Only Change Rates

The results of the two band-ratio methods described in Section 3.6 are summarized in Table 7 (see also the
Supporting Information S1 for an example of how we choose the two thresholds by maximizing the IOU). Based
on these results, we make the following observations:

Despite fitting a much larger number of parameters in the glacier-wise version (i.e., the number of glaciers X 2
vs. only the number of cross-validations splits X 2), the recall stays approximately constant (88%) and only the
FP rate decreases from 9% to ca. 7%.

Given the focus of our work, the most important is the difference between the glacier area change rate esti-
mates, which are significantly more negative for the band-ratio method. One possible explanation could be the
negative correlation between glacier areas and debris-cover fractions (Herreid & Pellicciotti, 2020). Knowing
also that glaciers are melting rapidly (GLAMOS, 2024; Hugonnet et al., 2021), a shrinkage in their surface is
then expected, which will translate into a (relatively) higher percentage of debris in 2023 compared to 2015.
Additionally, the differences may also come from the calibration procedure: thresholds were optimized based
on the 2015 inventory, potentially biasing the model to favor higher recall in 2015 scenes (e.g., by tuning
thresholds to include shadowed areas). If the scene conditions in 2023 differ significantly—such as reduced

Comparison to Band-Ratio Method and the Impact of dh/dt

Method

Inventory 2023

Total area predicted (km?) Recall® (%) Recall® (%) FP° (%) Total area predicted (km?) Annual area change rate (% y~!)

DL4GAM
DL4GAM (no dh/dt)
for clean-ice only: Band-ratio (v1)

Band-ratio (v2)

1610.8 93.5 83.1 4.7 1391.0 —1.78
1593.5 92.6 74.3 4.1 1335.9 -2.10
1519.1 87.7 - 8.1 1216.8 -2.59
1534.4 88.8 - 7.5 1220.0 —2.67

Note. The table shows the results obtained using our U-Net ensemble and two versions of the band-ratio (R/SWIR) thresholding method (vl and v2 denote the
(sub)regional and glacier-wise versions, respectively; see Section 3.6). The second line shows the impact of dropping the dh/dt maps from the inputs. The results are
based on the aggregated estimates for all the 1593 glaciers covered in our data set, without any outlier filtering. “Here we are only taking into account the predictions
strictly within the glacier inventory boundaries (i.e., the 20-m buffer is not used). We then compute the recall by referring to the total inventory area of the covered
glaciers, that is, 1684.7 km? (see Table 2). "The recall of the debris is computed using only the glaciers from Switzerland and with a debris coverage percentage larger
than 1% (n = 288, total area = 594.45 km?), based on the inventory from Linsbauer et al. (2021). The resulting total debris area is 56.04 km?. Note that the band-ratio
methods do not have the capability to retrieve debris-covered pixels so we do not report the recall for them. “The FP rate is computed by referring to the non-glacierized
pixels within a 20-50 m buffer, which results in a total area of 262.4 km?.
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snow cover or different illumination—those same thresholds may no longer be optimal, resulting in lower
recall and a consequent overestimation of shrinkage.

4.4.2. The Importance of Elevation Change Maps

As discussed in the Introduction, debris-cover glaciers remain one of the biggest challenges in fully automatic
glacier mapping. To the best of our knowledge, no other DL study investigated the use of dh/dt maps as com-
plementary input data. To show the benefit of including them, we re-trained the U-Net ensemble but discarded the
dh/dt inputs. The results, summarized in Table 7, show that including the dh/dt improves the overall recall by
around 1%, and by 8.8% when considering only the debris-covered areas, both while increasing the FP rate only
by 0.6%.

One important issue with this approach, however, is that the dh/dt product does not have a perfect temporal match
with the images—nor do the DEM and its derived features. While this may be less critical for the DEM, given that
surface elevation does not change drastically over time (in relative terms), the temporal mismatch can be more
problematic for the dh/dt input. Ideally, we would use a dh/dt product that (a) captures elevation changes over a
shorter time period and (b) is temporally close to the image acquisition date—e.g., covering the current hydro-
logical year or even a shorter interval, depending on vertical accuracy. This would ensure that the elevation
change signal reflects the most recent spatial extent and condition of the glacier. Without such alignment, there is
a risk that the dh/dt input reflects outdated glacier geometry or surface processes, which could introduce biases
into the final area estimates. In addition, the spatial resolution of the dh/dt product (100 m) is substantially coarser
than that of the Sentinel-2 optical imagery (10 m), which may lead to mismatches near glacier boundaries and
reduce the effectiveness of this input in capturing small-scale features. However, high-resolution, short-term
elevation change products are not (yet) available.

4.5. Computational and Data Scalability
4.5.1. Runtime and Computational Resources

The models were trained on one node from JUWELS Booster (hosted by Jiilich Supercomputing Center),
equipped with an AMD EPYC 7402 processor, 512 GB RAM and 4 NVIDIA A100 GPUs. Training a single
model takes up to 1 hr. Since we use five geographic splits and train an ensemble of 10 models per split, this would
total around 50 hr. However, by fitting two models per GPU in parallel, we reduced the effective training time to
approximately 10 hr.

Once trained, inference on a single glacier using one model typically takes less than 2 s (1 = 1.79 s), depending on
glacier size—with the largest glaciers taking up to 1 min. Since we use an ensemble of 10 models, each glacier is
processed 10 times per year, resulting in a total of 20 inferences per glacier (2015 and 2023). Across 1593
glaciers, 2 years, and 10 ensemble models, this results in 31,860 glacier-wide model evaluations. An additional
7,240 inferences were performed on glaciers from the validation folds of 2015, for calibration purposes. Although
this would take approximately 19 hr if run sequentially, parallelization reduced total inference time to under 5 hr.
Processing glaciers one at a time reduces GPU efficiency, particularly for small glaciers with only a few patches.
We could further reduce the time by grouping patches across multiple glaciers, thus improving throughput by
building larger batch sizes during inference.

4.5.2. Design Constraints and Data Volume

While DLAGAM achieves high-quality results and robust uncertainty estimates through deep ensembles, this
comes with a non-negligible computational cost. In our case, the relatively small size of the study region kept this
cost manageable, especially with parallelized training and inference. However, when scaling to larger or global
glacierized regions, computational efficiency could become increasingly important. As an intermediate step,
reducing the ensemble size to five members—which Ovadia et al. (2019) found to still yield robust uncertainty
estimates under distribution shift—could reduce the computational cost, though the quality of the uncertainty
estimates would need to be carefully reassessed. Future work may explore more scalable alternatives to en-
sembles, for example, deterministic uncertainty estimation methods that provide uncertainty estimates from a
single model.
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5. Conclusions

This study demonstrates the potential of deep learning techniques for accurately and efficiently monitoring
glaciers, at individual level. The DLAGAM framework is based on an ensemble of ten U-Net models, which are
trained and tested using a five-fold geographic cross-validation scheme. This has the advantage that we can
concatenate the predictions on the testing folds and use them in the change analysis, which minimizes the biases
toward the training set. In addition to validating the model against the inventory used for training, we applied
DL4GAM on a small set of glaciers from the Swiss glaciers inventory (SGI2016). We showed that our results
align well with their round-robin experiment, demonstrating high accuracy in the estimated areas and reliable
uncertainty estimates. Once the models are trained on the 2015 data, they are applied on the most recent Sentinel-2
images, from 2023. These images are automatically selected using a procedure that aims to minimize both the
cloud coverage and the seasonal snow to ensure good mapping conditions. Finally, we provide annual area change
rates over 2015-2023 for ca. 900 glaciers, covering around 70% of the region. Based on these, we estimate a
regional change rate of —1.90 + 1.26% per year, with significant inter-glacier variability. We also compared the
DLAGAM regional estimates with those obtained based on the band-ratio thresholding (therefore capturing only
the clean ice), showing that the latter would overestimate the glacier area shrinkage rates even more, probably
caused by the increasing debris coverage. The potential for using our results (outlines or change rates) in geodetic
mass balance calculations depends on the scale of analysis. While we are confident in the regional estimates, as
systematic errors tend to balance out over large areas, their applicability at the sub-regional scale remains
promising but requires further validation. At the individual glacier level, the variability is higher, and only results
that pass quality control can be considered reliable. Future work could explore whether mass balance estimates
improve by using these quality-controlled outlines while applying an average change rate to the remaining
glaciers.

A few challenges remain unresolved and require additional study. First, our models still struggle to accurately
identify debris-covered glacier regions, even after incorporating the elevation change maps as inputs, leading to
the exclusion of almost 40% of the glaciers in our quality control process. While our final estimates still cover a
significant portion of the glacierized area in the region, ideally, we aim to monitor every individual glacier.
Second, the effectiveness of the dh/dt input is limited by both its coarse spatial resolution and temporal mismatch
with the imagery, which may introduce biases in the estimated glacier extents. Future work could investigate the
impact of these limitations more systematically and conduct a more detailed ablation study to evaluate the
performance of the method without such inputs, or in regions characterized by minimal elevation change. Third,
regarding the assumption made during the image acquisition phase—that at least one image with good mapping
conditions exists within the specified period—we aim to explore techniques for evaluating the suitability of
automatically selected images, and inform the user when none is available. In addition to addressing these
limitations, as future work we also plan to extend our study to additional regions to assess whether the models
generalize effectively or require further training. In the latter case, progress will be constrained by the availability
of training labels which have to be dated post-2015, unless we rely on different sensors. Finally, the current use of
deep ensembles for uncertainty estimation, while effective, may become computationally demanding when
scaling to larger regions or operational applications. Future work could explore lighter-weight alternatives that
estimate uncertainty directly from a single model, offering a more scalable solution. In addition, we aim to
investigate whether incorporating expert-derived uncertainty estimates (e.g., inter-annotator variability) into the
calibration process could improve the interpretation of model uncertainty, particularly in cases where the
reference outlines are themselves imperfect.

To summarize, our method serves as an intermediate solution for glacier monitoring, enabling reliable estimates
of regional glacier area change and, where quality thresholds are met, glacier-wide change rates. While the
analysis is currently limited to glaciers larger than 0.1 km?* and those passing our uncertainty-based filtering, the
approach supports near-real-time updates with minimal manual effort.
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