Lee, Jongseok und Birr, Timo und Asfour, Tamim und Triebel, Rudolph (2025) CLEVER: Stream-based Active Learning for Robust Semantic Perception from Human Instructions. IEEE Robotics and Automation Letters, 10 (9), Seiten 8906-8913. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LRA.2025.3588387. ISSN 2377-3766.
|
PDF
- Preprintversion (eingereichte Entwurfsversion)
8MB |
Offizielle URL: https://ieeexplore.ieee.org/document/11078143
Kurzfassung
We propose CLEVER, an active learning system for robust semantic perception with Deep Neural Networks (DNNs). For data arriving in streams, our system seeks human support when encountering failures and adapts DNNs online based on human instructions. In this way, CLEVER can eventually accomplish the given semantic perception tasks. Our main contribution is the design of a system that meets several desiderata of realizing the aforementioned capabilities. The key enabler herein is our Bayesian formulation that encodes domain knowledge through priors. Empirically, we not only motivate CLEVER's design but further demonstrate its capabilities with a user validation study as well as experiments on humanoid and deformable objects. To our knowledge, we are the first to realize stream-based active learning on a real robot, providing evidence that the robustness of the DNN-based semantic perception can be improved in practice.
| elib-URL des Eintrags: | https://elib.dlr.de/218707/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
| Titel: | CLEVER: Stream-based Active Learning for Robust Semantic Perception from Human Instructions | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 11 Juli 2025 | ||||||||||||||||||||
| Erschienen in: | IEEE Robotics and Automation Letters | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||
| Band: | 10 | ||||||||||||||||||||
| DOI: | 10.1109/LRA.2025.3588387 | ||||||||||||||||||||
| Seitenbereich: | Seiten 8906-8913 | ||||||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
| ISSN: | 2377-3766 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Active Learning; Bayesian Learning; Humanoids | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Robotik | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Erklärbare Robotische KI, R - Multisensorielle Weltmodellierung (RM) [RO] | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||
| Hinterlegt von: | Lee, Jongseok | ||||||||||||||||||||
| Hinterlegt am: | 11 Nov 2025 11:15 | ||||||||||||||||||||
| Letzte Änderung: | 11 Nov 2025 11:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags