Hickmann, Manuel Lautaro und Alves, Pedro und Quero-Martin, David und Schwenker, Friedhelm und Rieser, Hans-Martin (2025) Hybrid quantum tensor networks for aeroelastic applications. Quantum Machine Intelligence, 7 (103), Seiten 1-13. Springer Nature. doi: 10.1007/s42484-025-00327-8. ISSN 2524-4906.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://link.springer.com/article/10.1007/s42484-025-00327-8
Kurzfassung
We investigate the application of hybrid quantum tensor networks to aeroelastic problems, harnessing the power of Quantum Machine Learning (QML). By combining tensor networks with variational quantum circuits, we demonstrate the potential of QML to tackle complex time series classification and regression tasks. Our results showcase the ability of hybrid quantum tensor networks to achieve high accuracy in binary classification. Furthermore, we observe promising performance in regressing discrete variables. While hyperparameter selection remains a challenge, requiring careful optimisation to unlock the full potential of these models, this work contributes significantly to the development of QML for solving intricate problems in aeroelasticity. We present an end-to-end trainable hybrid algorithm. We first encode time series into tensor networks to then utilise trainable tensor networks for dimensionality reduction, and convert the resulting tensor to a quantum circuit in the encoding step. Then, a tensor network inspired trainable variational quantum circuit is applied to solve either a classification or a multivariate or univariate regression task in the aeroelasticity domain.
| elib-URL des Eintrags: | https://elib.dlr.de/218705/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | Hybrid quantum tensor networks for aeroelastic applications | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 10 November 2025 | ||||||||||||||||||||||||
| Erschienen in: | Quantum Machine Intelligence | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| Band: | 7 | ||||||||||||||||||||||||
| DOI: | 10.1007/s42484-025-00327-8 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 1-13 | ||||||||||||||||||||||||
| Herausgeber: |
| ||||||||||||||||||||||||
| Verlag: | Springer Nature | ||||||||||||||||||||||||
| Name der Reihe: | Quantum Techniques in Machine Learning 2024 | ||||||||||||||||||||||||
| ISSN: | 2524-4906 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Tensor networks; Quantum machine learning; Hybrid machine learning; Variational quantum circuits | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Quantencomputing-Initiative | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | QC AW - Anwendungen | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | QC - QuTeNet | ||||||||||||||||||||||||
| Standort: | Ulm | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für KI-Sicherheit Institut für Aeroelastik > Aeroelastische Simulation | ||||||||||||||||||||||||
| Hinterlegt von: | Hickmann, Manuel Lautaro | ||||||||||||||||||||||||
| Hinterlegt am: | 11 Nov 2025 08:52 | ||||||||||||||||||||||||
| Letzte Änderung: | 11 Nov 2025 08:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags