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of resolving ever finer grids leading to an enormous com-
putational effort for the numerical simulations. Therefore, 
finding efficient implementations is a key research field in 
aeroelastics. In particular, this involves developing tech-
niques for the reduced order modelling of nonlinear aero-
dynamics. These techniques need to consider the complex 
nonlinear behaviour originated by the compressible, viscous 
and turbulent flow phenomena while not needing to simu-
late this behaviour on each grid point. Inherent difficulties 
are the nonlinear dependence and the high-dimensionality 
regarding the phase space on the grid required in order to 
describe such features.

Data driven implementations using machine-learn-
ing algorithms for aeroelastic simulations are currently 
under development as possible solutions to these require-
ments  (Sabater et al. 2022; Zahn and Breitsamter 2022). 
Recently there has also been an increasing interest in utilis-
ing quantum computation and tensor network approaches 
(both on classical and quantum hardware) for Machine 
Learning (ML) (Stoudenmire and Schwab 2016; Reyes and 
Stoudenmire 2020; Dilip et al. 2022; Shen et al. 2024; Hug-
gins et al. 2019). Therefore, we investigated the prospect of 
using hybrid quantum tensor network based algorithms for 
aeroelastic problems.

1  Introduction

Simulations of aeroelastic phenomena involve modelling 
complex fluid dynamics and the structural behaviour of 
components. For modern aircraft design, a detailed level of 
fidelity in the modelling of complex aeroelastic phenomena 
is essential. Increasing modelling fidelity leads to the need 
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Abstract
We investigate the application of hybrid quantum tensor networks to aeroelastic problems, harnessing the power of 
Quantum Machine Learning (QML). By combining tensor networks with variational quantum circuits, we demonstrate 
the potential of QML to tackle complex time series classification and regression tasks. Our results showcase the ability 
of hybrid quantum tensor networks to achieve high accuracy in binary classification. Furthermore, we observe promis-
ing performance in regressing discrete variables. While hyperparameter selection remains a challenge, requiring careful 
optimisation to unlock the full potential of these models, this work contributes significantly to the development of QML 
for solving intricate problems in aeroelasticity. We present an end-to-end trainable hybrid algorithm. We first encode time 
series into tensor networks to then utilise trainable tensor networks for dimensionality reduction, and convert the resulting 
tensor to a quantum circuit in the encoding step. Then, a tensor network inspired trainable variational quantum circuit is 
applied to solve either a classification or a multivariate or univariate regression task in the aeroelasticity domain.
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A wide variety of QML approaches employing quan-
tum circuits with tunable parameterised gates, so called 
Variational Quantum Circuits (VQCs), have recently been 
proposed  (Schuld et al. 2021). Quantum tensor networks 
for ML can be realised by VQCs using a tensor network 
inspired internal gate structure. Tensor Networks (TN) were 
initially developed to reduce the computational cost of lowly 
entangled multi-particle quantum states. Nevertheless, they 
are able to efficiently approximate a wide variety of large 
tensorial objects using a regular, less complex structure. 
Thus, providing a convenient approach to QML (Rieser et 
al. 2023).

While QML is generating increasing interest in cer-
tain heuristic cases where advantages are suspected, these 
approaches often struggle to be described in the language 
of quantum circuits (Huang et al. 2021). For realistic prob-
lems, we see the necessity to integrate quantum-enhanced 
or based approaches into practical pipelines. Therefore, 
our focus lies in developing an end-to-end trainable hybrid 
Quantum Tensor Networks (QTN) approach.

This work seeks to investigate the potential benefits and 
limitations of hybrid QTN methods for realistic aeroelastic 
problems, with a focus on understanding their capabilities 
and constraints rather than directly searching for quantum 
advantages. By doing so, we aim to provide a compre-
hensive framework for the development of more effective 
hybrid QTN algorithms, ultimately contributing to the 
advancement of machine learning techniques for complex 
aeroelastic simulations and informing future research direc-
tions in this field.

Our approach emphasizes in particular efficient data 
encoding into quantum circuits for hybrid QML methods. 
Efficient encoding is a crucial step in QML. Recently, two 
promising approaches have emerged: pre-training quantum 
circuits to approximately encode data  (Shen et al. 2024), 
and using TNs based encoding techniques to exactly encode 
data into quantum circuits (Ran 2020). However, these tech-
niques have previously been used as preprocessing steps, 
where data is encoded once and then used as input for train-
able quantum circuits. In contrast, our approach integrates 
the TN-based encoding into a fully end-to-end trainable 
hybrid algorithm. This approach entails a TN decomposi-
tion of the classical step to quantum gates, as explained in 
Subsection 2.2.

Our setup enhances current QML algorithms by combin-
ing three key components: a trainable TN-based dimension-
ality reduction,  TN-based data encoding, and a trainable 
TN-inspired VQC (Shen et al. 2024), as explained in Sub-
section  2.3. This integrated approach enables end-to-end 
training using a single classical optimiser, allowing us to 
solve regression and classification tasks. An additional 
major technical contribution is the inclusion into a thorough 

state-of-the-art machine learning pipeline, including optimi-
sation tools, mini-batch training and hyperparameter search 
with cross-validation.

2  Methods

2.1  Aeroelastic application

Classical tensor networks have various application sce-
narios within aeroelastics (Batselier et al. 2017). Relevant 
applications include data-driven aeroservoelasticity or the 
computation of dynamic loads resulting in an airframe of 
a manoeuvring aircraft  (Jia et al. 2022). Within this field, 
nonlinear effects originating either from the structural or 
aerodynamic counterparts or a combination of them are of 
importance. The overall goal is to derive models from data 
which are able to predict aeroelastic characteristics (includ-
ing damping) and thus, the stability behaviour of the sys-
tem (Böswald et al. 2017).

One problem of particular interest in aeroelasticity is the 
determination of the flutter stability. To determine the stabil-
ity, the feedback interaction between the structure and the 
aerodynamic forces has to be considered including inertial 
and elastic forces. We use a simplified aeroelastic configu-
ration including a low-dimensional aerodynamic model for 
investigating the potential of QML for estimating the flutter 
stability of the system, based on Quero et al. (2019).

The selected case comprises a typical aeroelastic section 
of a wing with three degrees of freedom including heave h 
(positive downwards), pitch θ (positive nose up) around the 
elastic axis location and an aileron rotation β (positive with 
trailing edge down) (Tewari 2015). No assumption regard-
ing the flow physics has been made and thus the methods 
are entirely data-driven, similar to Rauseo et al. (2021). The 
corresponding aeroelastic equations of motion are given by
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 where the structural damping has been neglected. The aero-
dynamic forces acting upon the structure are represented by 
the lift coefficient cl, the pitching moment at the elastic axis 
cm and the hinge moment at the aileron hinge axis cβ . A 
set of parameters has been chosen to be constant and their 
values are specified in Table 1, where the non-dimensional 
distances are obtained upon dividing by the reference length 
Lref. Table 2 shows the variation of parameters carried out 
for the applications described next.

1 3

  103   Page 2 of 13



Quantum Machine Intelligence           (2025) 7:103 

Equation 1 cannot be directly numerically integrated in 
time, as the aerodynamic coefficients are provided in the 
frequency-domain. When considering incompressible two-
dimensional unsteady potential flow, they are provided in the 
frequency domain as irrational functions of the frequency. 
Thus, a specific procedure is applied in order to transform it 
into a state-space representation (Quero et al. 2019), which 
can finally be numerically integrated in time with a common 
ordinary-differential equation (ODE) solver:

d

dt

([ uh
duh

dt
xa

])
= Aae

[ uh
duh

dt
xa

]
,

uh = Cae

[ uh
duh

dt
xa

]
,

� (2)

where uh = [h/Lref θ β]T  and xa contains the resulting 
aerodynamic states. For details on the matrices Aae and Cae 
the interested reader is referred to Quero et al. (2019). Once 
written in this form, the eigenvalues of the matrix Aae deter-
mine the flutter stability of the aeroelastic system, which 
is then dependent on the value of the parameters given in 
Table 2, provided the parameters in Table 1 haven been fixed.

The goal of this application case is to apply hybrid 
quantum algorithms to the tasks of stability classification 
based on time series and regression of parameters from a 
time series. The stability of the system described in Eq. 1 
is considered when subjected to non-zero initial conditions. 
In particular, the initial value of the first state component 
corresponding to a heave displacement is set to 1. Note that 

the physical magnitude is not of relevance here, as Eq. 2 is 
linear with respect to the states. Four representative time 
histories are provided in Fig. 1, where two stable and unsta-
ble cases each are represented for different combinations of 
the parameters (a, µ, U∞), the three time series describe the 
response on each degrees of freedom (h, θ, β).

2.2  TN based preprocessing and encoding

Classical Tensor Networks (CTNs) have various applica-
tions within aeroelastics, such as aeroelastic system iden-
tification. The goal is to derive data driven models which 
enable the prediction of aeroelastic characteristics including 
the stability behaviour of the system (Böswald et al. 2017).

Tensor Networks were originally conceptualised to 
facilitate the simulation of Quantum Many-Body Systems 
by reducing the amount of correlations inside a quantum 
state (Wall et al. 2022). They are a set of tensor objects con-
nected with each other in a specific layout through index 
contraction. Several different regular tensor network layouts 
with varying dimensionality have been studied. The most 
common ansatz is the Matrix Product State (MPS) (Fannes 
et al. 1992) shown in the first row of Fig. 2. Other layouts 
are tree tensor networks (TTN) (Murg et al. 2015), MERA 
networks  (Vidal 2007), which are trees with entangled 
branches and two-dimensional PEPS networks (Sierra and 
Martin-Delgado 1998).

The aforementioned TNs, are a powerful tool for rep-
resenting complex data structures, enabling the efficient 
manipulation of classical and quantum systems. By apply-
ing Tensor Network Operators (TNOs), it is possible to per-
form operations on data in TN format, effectively modifying 
the underlying structure. TNOs represent local linear trans-
formations, akin to matrix multiplications, which can be 
applied to specific sections of the TN. For instance, MPSs 
can be transformed using Matrix Product Operators (MPOs), 
which are defined by introducing an additional free index 
at each site, where one is considered the upper index (free 
input index) and lower index (free output index). By con-
tracting the input indices of the MPO with those of the MPS, 
a new, transformed MPS is produced from the free output 
indices, allowing for efficient manipulation and analysis of 
complex data structures.

Table 1  Constant parameters
Description Parameter Value
Reference length

Lref
0.5 (m)

Uncoupled heave natural frequency ωh
50 
(rad/s)

Uncoupled pitch natural frequency ωθ
100 
(rad/s)

Uncoupled aileron natural frequency ωβ
300 
(rad/s)

Non-dimensional distance from e.a. to the 
airfoil c.g.

xθ
0.2

Non-dimensional distance aileron h.a. to 
aileron c.g.

xβ
0.0125

Non-dimensional airfoil radius of gyration 
about e.a.

rθ

√
0.25

Non-dimensional aileron radius of gyration 
about aileron h.a.

rβ
√

0.00625

Non-dimensional distance between the 
midchord and the aileron h.a.

c 0.5

Centre of gravity is denoted by c.g., elastic axis by e.a., and hinge 
axis by h.a

Table 2  Varied parameters
Parameter Interval Increment
Non-dimensional distance 
between midchord and e.a.

a ∈ [−0.4, 0.4]
�

a = 0.1

Mass ratio µ ∈ [10, 50]
�

µ = 0.1
Airspeed U∞ ∈ [150, 350] (m/s)

�
U∞ = 1 (m/s)

Elastic axis is denoted by e.a

1 3

Page 3 of 13    103 



Quantum Machine Intelligence           (2025) 7:103 

converted into unitary gates with some linear algebra kernel 
acquisition technique (Ran 2020). In other words, the output of 
such circuit of unitaries reflecting the one-dimensional layout, 
is the quantum state encoded by the QTN. Figure 2, shows the 
mapping of a canonised MPS, to a quantum circuit.

TNs already found their way into applications within 
classical machine learning (Reyes and Stoudenmire 2020). 
For instance, here a CTN can represent an input vector, a 
linear operator or encode non-linear functions while ben-
efiting from local operators that preserve a compressed 
representation of the problem at hand. At the expense of a 
normalisation constant, a CTN can be transformed into a 
QTN, for it to subsequently be mapped to a quantum circuit.

For our use case, the input data consists of a three-dimen-
sional time series described in Subsection  2.1. The time 
series have a wide range of values with the converging ones 
usually being in the range of ±1 but the diverging one can 
take values over ±5 × 10100. As a first step we normalise 

When choosing a tensor network type for a specific task, 
it is crucial to take the scaling behaviour of the task into 
account. While one-dimensional data like time series are 
handled well using MPS, images require a two-dimensional 
scaling of the information entropy in the worst case. In this 
study, we focus on time series therefore a one-dimensional 
MPS layout is well suited. In an MPS two additional hyper-
parameters can be chosen: the bond dimension which is 
determined by the number of qubits passed on from each 
node to the next, and the number of data qubits that are 
passed to the circuit at each iteration.

A Quantum Tensor Networks (QTN) is a TN that represents 
a compressed version of a quantum state implying that the TN 
is primarily under the normalisation condition. One additional 
property relevant for this work is that a canonically gauged one-
dimensional QTN can be mapped to a quantum circuit (Ran 
2020; Liu et al. 2019; Huggins et al. 2019). Once in canonical 
gauge, the majority of its tensors are isometries which can be 

Fig. 2  QTN quantum circuit map-
ping example of a MPS represent-
ing a quantum state where the bond 
dimension increases exponentially 
to the centre bond. Here, the main 
phases are highlighted: the can-
onisation already leaves 3 tensors 
as unitary gates (blue squares), 2 
tensors as isometries (blue circles) 
and 1 orthogonality centre repre-
senting essentially a normalised 
vector (green circle); the kernel 
acquisition step ensures that the 
full unitary gates can be found and 
the beginning of the quantum wires 
can be assigned with the zero-state 
|0⟩

 

Fig. 1  Prototypical aeroelastic time 
series responses for each degree of 
freedom for four sets of aeroelastic 
parameters. The two on the left 
are stable and the two on the right 
unstable response

 

1 3

  103   Page 4 of 13



Quantum Machine Intelligence           (2025) 7:103 

reduce the dimensionality of the data and learn the encoding 
to be deployed on the quantum circuit, as shown in Fig. 3. 
Additionally, tensor networks mapped to quantum circuits 
can have qubit efficient representations (Rieser et al. 2023).

Due to the one-dimensional structure of the time series, 
tensor networks and specifically MPS are well suited to 
express this type of data  (Rieser et al. 2023). To improve 
the compatibility of our data with TNs, we preprocessed the 
original time series by upsampling it from 201 time steps 
to 35 = 243 using smoothing B-splines. This upsampling 
enables an efficient decomposition into a 5-node MPS with 
free indices of dimension 3, allowing for a compact repre-
sentation of the data. An additional free index is introduced 
to select one of the three time series, effectively encoding 
the time series dimension. The preprocessing steps are illus-
trated in the first row of Fig. 3.

This MPS is contracted with a subsequent trainable MPO 
that aims to reduce the dimensionality of the input MPS and 

each group of time series as one, i.e. concatenate all three 
time series, normalise the resulting one and then separate 
them again. This way the amplitude relation between each 
dimension of the time series remains unchanged. Each data 
point, i.e. each group of three time series for a set of aero-
elastic parameters (a, µ, U∞), is normalised independently 
and the norms (re-scaled to [0, π]) are saved to be utilised as 
an input to the quantum circuit.

As quantum mechanics is a linear theory, nonlinear behav-
iour can only be introduced by interactions with the classical 
environment, e.g. by carrying out measurements or during 
encoding of the normalised inputs x using some encoding 
map Φ(x)  (Yan et al. 2015). Finding the right encoding 
strategy for a QML application is often a difficult task. A 
variety of methods have been developed which lie between 
the two extremes: “qubit efficient”, realised by amplitude 
encoding, and “gate efficient”, realised by binary encoding. 
In this work, we decided to use a tensor network operator to 

Fig. 3  Preprocessing and encod-
ing structure. First we encode the 
three time series comprising each 
data point into an MPS. We then 
apply an MPO based dimensional-
ity reduction and non-linearities. 
Finally we disentangle the resulting 
TN into a quantum circuit
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circuit, choices on a very basic level must be made, e.g. the 
data encoding circuit, entangling schemes and the measure-
ment processes. As it is not clear to date which choices are 
most relevant for the quantum machine learning application 
we carried out a comprehensive hyperparameter search.

A VQC is a quantum circuit with gates that feature tun-
able parameters, usually rotational gates. A general varia-
tional unitary can be decomposed into a combination of 
rotation and entangling gates like the CNOT. A common 
category of VQC architectures for machine learning are lay-
ered VQCs. Here, the circuit consists of encoding blocks 
that map the data to the circuit, and variational blocks which 
entangle the qubits and introduce the optimisable param-
eters. To increase expressivity, these blocks are executed 
repeatedly (Schuld et al. 2021).

Another approach is to employ a QTN for machine learn-
ing using parameterised gates, often also called TN inspired 
ansatz. It is a variety of VQC that carries a tensor network 
based internal gate structure  (Dilip et al. 2022). The con-
struction of the tensor network approach using “states” and 
“operators” makes it straightforward to translate the concept 
to quantum computation as seen in Fig. 4. Both are realised 
by a set of parameterised multi-qubit gates where the only 
difference between states and operators is whether the gates 
have only incoming or outgoing free bonds or both.

To make use of the capabilities of quantum computers, 
the individual qubits have to be entangled by using multi-
qubit gates. These gates have several free parameters that 
can be used to define how the incoming data is processed. 
When kept trainable, they can act as parameters of machine 
learning algorithms.

As shown in Fig. 4, we first encoded the data by using one 
or more layers of arbitrary unitaries derived from the pre-
processing MPS through the disentangling process. Addi-
tionally, we encoded the norm of the original time series 
obtained in the first normalisation step and the norm of the 

learns the optimal encoding scheme to the quantum circuit. 
For this purpose, the MPO has 6 free input indices of dimen-
sion 3 and 8 free output indices of dimension 2. The dimen-
sion of the MPO’s internal bonds can be adjusted to carry 
more trainable parameters and potentially add more correla-
tions to the data, thus being considered a hyper-parameter. 
Naturally, the output of this contraction is another MPS with 
8 free indices of dimension 2. To improve the expressivity, 
we applied a tanh nonlinearity on the resulting MPS param-
eters before normalisation.

Since one of the objectives of this preprocessing step is to 
learn what to encode in the quantum circuit, this output CTN 
still needs to be converted into a QTN which can be done by 
normalising it (Dborin et al. 2022). We then used the tech-
nique shown in Ran (2020), to map it into a quantum circuit. 
This technique adds layers of cascading 2-qubit gates that 
have the ability to progressively disentangle the state rep-
resented by the output of the MPO (except for a normalisa-
tion constant) to the zero-state |00...⟩, hence being called 
Matrix Product Disentangler (MPD). From another perspec-
tive, inverting the order of these layers and transpose-conju-
gating every unitary, the layers will progressively entangle 
the state |00...⟩ until the desired state is reached. The more 
layers there are, the more correlations/entanglement can be 
achieved in the state. Therefore, the number of MPD layers 
is considered a hyper-parameter in this set-up for gradually 
adjusting the entanglement of the input state to the VQC 
circuit. The complete procedure is shown in Fig. 3.

2.3  TN inspired VQC classifier

Once we have the data encoded into a quantum circuit, the 
next step is to process it using QML. Quantum computa-
tion in general and QML in particular are still in very early 
stages of development. Today, most quantum algorithms 
are written on a circuit level. When designing a quantum 

Fig. 4  Typical layout for an MPS 
inspired VQC for the regression 
task measuring multiple qubits. 
Here including Norm encoding 
and using one encoding and one 
classification layer. Lastly a train-
able measurement layer is applied. 
Similar to Fischbach et al. (2025)
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For each hyperparameter configuration, a 5-fold cross 
validation was carried out, using the methods previously 
explained. At the end of each training, the maximum scores 
per fold over all previous epochs of the metrics were aver-
aged and used as the objective value for the hyperparameter 
search algorithm. We used the well known F1 score for the 
classification task and R2 score for the regression task.

After conducting the hyperparameter search, we retrained 
the best configuration for each task using the complete train-
ing set as folds, i.e. we ran the training 5 times with different 
random seeds on the complete training dataset (training + 
evaluation datasets used for the hyperparameter search), and 
tested the trained models on the test set.

3  Results and discussion

After conducting an exhaustive hyperparameter search and 
retraining the top-performing quantum models, we analysed 
the results and evaluated various metrics to identify potential 
bottlenecks and areas of improvement in order to gain insights 
into the performance of our hybrid QTN approach. Further-
more, we also compared the results to those obtained using 
Multilayer Perceptrons (MLPs) with a comparable number of 
trainable parameters using two-layers. We begin by presenting 
the results achieved by the quantum networks, followed by a 
comparison to approximately equivalent classical counterparts.

We found that our hybrid TN inspired algorithm could 
easily solve the binary time-series classification, achieving 
a maximum F1-score of well above 0.9, averaged over 5 
repeated training runs. The best model achieved a F1-score 
of 0.998, as shown in the Confusion Matrices (CMs) in 
Fig. 5. The models generalised very well, and we observed 
no overfitting. We carried out a very limited hyperparameter 
search, since we quickly found well performing configura-
tions. As it can be observed in the CMs, all training seeds 
converged towards good results.

While doing the hyperparameter search, we could 
observe that many configurations were unstable, achieving 
significantly different results for each fold. Overall, several 
configurations achieved good results, the best model used 
only a small MPO bond dimension of 2 and only one disen-
tangling layer, but needed four TN inspired quantum clas-
sification layers. This hints at the majority of the processing 
being done on the VQC side, for a highly compressed and 
potential low-entanglement representation obtained through 
the utilised MPO.

Our analysis of the training behaviour revealed that most 
runs converged rapidly, with most models achieving opti-
mal performance within 5 epochs, with the amount of gradi-
ents updates depending on the utilised batch size. Although 
this might suggest the presence of barren plateaus, a closer 

resulting MPS as parameters of a general rotation on the 
first qubit. Since otherwise, the information on the ampli-
tude relationship between time series would have been lost.

After the encoding, we applied a MPS inspired structure 
constructed from iterated layers of two qubit gates  (Dilip 
et al. 2022; Jobst et al. 2024; Shen et al. 2024). For the 
two qubit gates, we considered strongly entangling layers 
on two qubits (Schuld et al. 2020) with 6 trainable param-
eters per gate and general SU(4) unitaries (Wiersema et al. 
2024) with 15 trainable parameters per gate. For QTN, some 
authors recommend shuffling the remaining virtual qubits 
before measurement using a single layer of general rotations 
on the qubits being measured (Shen et al. 2024).

The measurement which later can be interpreted as the 
result of our machine learning algorithm can be performed 
in several ways. For classification problems, the simplest 
way is to chose one qubit as the output qubit. We mea-
sured the probabilities of the basis states on the last qubit 
and interpreted them as class probabilities, which were then 
compared against one hot encoded binary stability labels.

For the regression task, we measured either the expecta-
tion values of individual qubits or tensor product of pairs 
of qubits to predict the aeroelastic parameters. To make the 
comparison possible, we re-scaled the aeroelastic parameters 
to the ±1 range independently per feature. We investigate 
univariate regression by predicting each of the aeroelastic 
parameters with different models and multivariate regres-
sion by predicting all aeroelastic parameters at once. For 
the latter case, we measured either three Zi observables or 
three tensor products {Zi ⊗ Zj}i̸=j  observables on non-
overlapping pairs of qubits and interpreted them as elements 
of the target vector. Similarly for the univariate setup, we 
only measured one observable.

Besides the architecture of the quantum circuit, other 
parameters can be adjusted. There are several different clas-
sical optimisers that can be uses to train hybrid-quantum 
circuits. The parameters of the MPO and VQC where then 
jointly optimised using a classical optimiser through back-
propagation with auto-differentiation. We used the well 
known Adam optimiser (Kingma and Ba 2017), which uses 
global gradients. As loss functions, we used cross entropy 
for the classification tasks, and the Huber loss (Huber 1964) 
for the regression tasks.

The computations were performed using the 
Quimb  (Gray 2018) library for TNs, PennyLane  (Berg-
holm et al. 2022) for quantum circuits and simulations, and 
JaX (Bradbury et al. 2025) for the ML components. For sta-
tistical robustness we used cross validation, using the Shuf-
fleSplit method. We used the implementations provided in 
the scikit-learn library  (Pedregosa et al. 2011). Lastly we 
used the Optuna (Akiba et al. 2019) hyperparameter search 
framework.
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Overall, the regression task exhibited less stability, par-
ticularly for multivariate regression, as shown in the right 
side of Fig. 6. The univariate regression results were signifi-
cantly better, as depicted in Figs. 7 and 8.

A notable observation from the hyperparameter search 
was that some multivariate configurations achieved near-
optimal performance on specific target parameters (one 
of a, µ or U∞), comparable to those of univariate mod-
els. However, these models often predicted a single target 
dimension well while failing to accurately predict others. 
Nevertheless, the best multivariate model achieved a more 
balanced performance, albeit with a slightly lower R2 
score per target dimension. This suggests that the model 
was able to capture only certain aspects of the data, but not 
everything necessary for performing all three regressions 
at once.

In contrast, the models trained in a univariate fashion, i.e. 
to predict only a single target dimension, achieved outstand-
ing results. Notably, different hyperparameter configura-
tions yielded the best results for different target dimensions, 
suggesting that the chosen ansatz lacked flexibility. This 
may be attributed to the lack of trainable non-linearities.

As observed in Figs. 7 and 8, the repeated runs for differ-
ent seeds exhibited good convergence, but with a consider-
able spread. This variability implies that better initialisation 
techniques are needed. Our results indicate that using a noisy 
identity initialisation led to more stable results compared to a 
random uniformly distributed initialisation. However, a more 

examination of the gradient variance showed that the quan-
tum part of the model exhibited a tendency towards zero, but 
did not completely disappear. In contrast, the gradients of the 
MPO displayed more instability, with some values converging 
towards zero before spiking up and then returning to near zero. 
Despite this unusual behaviour, the classifier achieved out-
standing results. This behaviour calls for an in depth analysis 
of the loss landscape, and in particular the relations between 
the hyperparameters and the trainability of the models.

The test behaviour over training epochs for the best 
hyperparameter configuration on the classification task, as 
shown on the left side of Fig. 6, demonstrate rapid conver-
gence, with approximately 2 epochs required to achieve 
stable performance. This corresponds to around 114 mini-
batch gradient updates, for the selected batch size of 128. 
Notably, the models’ performance did not degrade over pro-
longed training. Furthermore, the initial spread of F1 values 
at epoch 0, reflects the impact of different weight initialisa-
tion. However, as training progressed, all models converged 
to remarkable results, suggesting that the optimisation pro-
cess was robust and effective.

For the regression task, we used the same TN inspired 
VQC algorithm as for classification, with adjustments for 
the number of measured qubits and the type of measurement 
carried out. As described in Subsection 2.3, the main differ-
ence is that we measured expectation values instead of basis 
state probabilities. Since we require more granular control 
over the predictions.

Fig. 6  Test F1 score (left) and test 
R2 score (right) values over train-
ing epochs for 5 different training 
seed of the best classification (left) 
and multivariate regression (right) 
model

 

Fig. 5  F1 confusion matrices on the test set for the best model for the classification task, for 5 different random training seeds
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granularity of each component: a has 9 distinct values, µ 
has 5 and U∞ has 201. The score difference between a and 
µ could be explained by the former having enough values 
to better cover the normed target value range, resulting in 
smaller errors between predictions and targets.

The regression task proved to be considerably more 
challenging than the classification task. The prediction 
of discrete variables with multiple possible values using 
expectation values of observables is a more complex task 
than binary classification. The model struggled to accurately 
predict the values, and the random initialisation of the mod-
els resulted in significant variability in performance.

In particular, we observed that for the cross validation 
some runs of the same configuration worked out well while 
others did not converge to a good score. This behaviour 
could be explained by instabilities arising from the data 
points randomly selected for each cross-validation fold, i.e. 
the failure to generalise from specific subsets of the data-
set. This may be mitigated by using more than five runs, 
i.e. using more folds, per configuration. Although, steeply 
increasing the resources requirements accordingly. The sec-
ond possibility would be to theoretically investigate the loss 
landscapes and initialisation of such quantum circuits and 
use these results to begin with better initial conditions.

in-depth analysis is required to isolate the factors contributing 
to this behaviour.

An interesting observation was made when examining 
the test R2 scores during training of the best selected model, 
shown in Fig. 8. The multivariate model initially performed 
well on the a-dimension, but then its performance degraded. 
Conversely, the other two dimensions (µ and U∞) showed 
improvement, suggesting that the model was learning to 
balance its predictions. This phenomenon may indicate that 
the model was initially over-specialised to one dimension 
and then generalised to the others. This behaviour could 
indicate at a lack of expressibility of the model, or the hard-
ness of the multivariate regression task.

The multivariate models exhibited a significantly wider 
spread across the 5 different training seeds compared to the 
univariate setup. Notably, the two setups displayed oppos-
ing trends in variance over time. The multivariate model 
showed relative stability at epoch 10, followed by a signifi-
cant divergence, particularly for the a and µ dimensions. In 
contrast, the univariate models demonstrated a reduction in 
variance over advanced training epochs.

The difference on the R2 scores for multivariate regres-
sion and the reason the hyperparameter configurations differ 
for each univariate setup can be explained by the different 

Fig. 8  Test regression score for 
the best model for the multivariate 
and univariate regression task over 
training epochs, averaged over 5 
runs of each model. Each column 
represents different prediction 
targets

 

Fig. 7  Test regression score for the 
best model for the multivariate and 
univariate regression task, aver-
aged over 5 runs of each model. 
Each column represents different 
prediction targets, and the labels at 
the bottom represent the targets the 
model was trained to predict
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with the selected quantum model for each task. The out-
put activation functions used were softmax for classification 
and tanh for regression, analogous to the probabilities and 
expectation values obtained from the quantum model.

For the classical network, we used the same MPO setup 
but contracted the final MPS instead of building disentangler 
layers. This yielded a 256-dimensional feature vector. Similar 
to the quantum case, we added the norm of the original time 
series and the norm of the MPO, resulting in a 258-dimen-
sional input vector for the classical network. By doing so, 
we ensured that the number of trainable parameters for the 
MPO remained equal for both the quantum and classical net-
works. Furthermore, the output dimension of the last layer was 
adapted to accommodate the specific task requirements, with 
a single output for classification and univariate regression, and 
a three-dimensional output for multivariate regression, com-
parable to the quantum model as described in Subsection 2.3.

After conducting a hyperparameter search, we selected 
the best models with similar numbers of trainable parame-
ters. Notably, all tasks exhibited optimal performance when 
using an elu activation function (Clevert et al. 2016) in the 
hidden layer. For the binary classification task, the quantum 
models achieved perfect results, and consequently, no sig-
nificant differences were observed when comparing with the 
classical networks. In contrast, the regression tasks exhib-
ited mixed behaviour, as illustrated in Fig. 9.

A key difference between the classical and quantum models 
is the reduced spread of results obtained from the classical net-
works, which highlights the need for improved initialisation 
and convergence analysis of quantum models. The classical 
networks demonstrated slightly better performance overall. 
Interestingly one can observe a big improvement in the a 
and µ dimensions, but worse results on the U∞ dimension 
when analysing each dimension of the multivariate regression 
individually. On the other hand, the multivariate regression 
results were better for the classical model. The general behav-
iour and “hardness” of each dimension were similar for both 
paradigms. For univariate regression, the classical methods 
showed slightly better results across all dimensions.

It is worth mentioning that for the univariate regression of 
the a target, we could not obtain a classical model with a com-
parable number of trainable parameters due to the extremely 
small size of the quantum model. As a result, the improved per-
formance of the classical setup required approximately ≈ 70% 
more trainable parameters. Nevertheless, in the hyperparame-
ter search for the quantum model, there were setups using more 
trainable parameters that did not achieve better results.

A fundamental challenge in comparing the two paradigms 
lies in how information is transferred from the TN based 
preprocessing to the respective neural networks. Since we 
contracted the resulting MPS for the classical network, this 
can be viewed as equivalent to having an exponentially large 

The analysis of hyperparameter importance revealed 
similarities between the classification and regression tasks, 
as well as between the two regression setups. Overall, the 
interpretation of the hyperparameter search results was 
challenging due to the high spread for single hyperparam-
eter values. This lead to the conclusion that not single, but 
combinations of hyperparameters have a significant impact 
on the model’s performance.

We used four parameter importance estimators, namely 
fANOVA (Hutter et al. 2014), Shapley TreeExplainer (Lun-
dberg et al. 2020), Mean Decrease Impurity (MDI)  (Agar-
wal et al. 2023), and PED-ANOVA (Watanabe et al. 2023) 
to select a subset of most important hyperparameters. The 
results showed that in almost all cases the number of quantum 
processing layers, the learning rate, and the chosen quantum 
ansatz were the most significant contributors to the model’s 
performance, except for the univariate a model were instead 
of quantum layers the MPO bond dimension played a role.

These observations suggest that the VQCs play a crucial 
role in determining the model’s performance. Two possible 
interpretations are that either the VQCs are doing most of 
the processing, and their performance is heavily influenced 
by these hyperparameters. Or, alternatively, the VQCs may 
be a bottleneck towards the model’s information processing 
capacity. Especially for the more complex regression tasks 
since the classification tasks could be perfectly solved.

On the other hand, the results also suggest that the MPO 
parameters have a limited impact on the model’s perfor-
mance. This could either mean that all tested configurations 
discard too much data leading to the quantum part having to 
do the heavy lifting, or that they provide enough flexibility 
to adapt to the needed information content.

The analysis highlights the importance of hyperparam-
eter tuning and the need for further investigation: An in-
depth ablation study would be necessary to fully understand 
the impact of these hyperparameters on the model’s perfor-
mance. Finding out what would be the best way to improve 
the synergies of the classical, TNs, hyperparameters with 
the quantum circuit hyperparameters remains challenging, 
and an in depth information theoretical analysis is needed.

To compare the performance of our quantum approach 
with a classical setup, we carried out a comprehensive 
evaluation after selecting and retraining the best quantum 
models. Ensuring a fair comparison between quantum and 
classical models is a challenging task, which remains an 
open question in the field. To make the comparison as fair as 
possible, we used the same training setup up to the disentan-
gling step of the framework described in Fig. 3. We chose a 
two-layer Multilayer Perceptron (MLP) architecture for the 
classical model allowing for non-linear hidden activations. 
We adjusted the dimension of the hidden representation 
to achieve a comparable number of trainable parameters 
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components - trainable TN-based dimensionality reduc-
tion, TN-based data encoding, and a trainable TN-inspired 
VQC - we enable end-to-end training using a single classi-
cal optimiser, eliminating the need for pre-training circuit 
representations for each data point.

We could solve the binary classification task perfectly, 
and achieved promising results for the time series multivari-
ate and univariate regression tasks. Although, the optimal 
choice of hyperparameters remains a challenge.

The main limitation of our current setup lies in the com-
putationally prohibitively expensive implementation of dis-
entangling layers. The resources needed for each subsequent 
layer increase very rapidly, and since we are creating them 
in each forward pass and using cross-validation in parallel, 
this severely limits the number of disentangling layers that 
could be used. This leads to the VQCs only using an estima-
tion of the MPO, which could represent a bottleneck in the 
expressivity of our framework. However, since it is trained 
end-to-end, it is possible that the system learns to pass the 

number of disentangling layers, whereas our quantum setup 
used only 2 to 8 layers due to computational constraints. The 
implementation of additional disentangling layers for the 
quantum setup was prohibitively expensive, representing a 
significant bottleneck in our current approach. Addressing 
this limitation will be a key focus of future work.

Overall, we show that realistic regression problems can 
be tackled by hybrid QML approaches and the results pro-
vide valuable insights into the importance of hyperparam-
eter tuning and the challenges of optimising VQCs. Further 
research is needed to fully understand the impact of these 
hyperparameters on the model’s performance.

4  Conclusion and future work

In conclusion, our study demonstrates the successful 
application of hybrid quantum tensor network-based algo-
rithms to aeroelastic problems. By integrating three key 

Fig. 9  Test regression scores for the best quantum and comparable 
classical models on the multivariate and univariate regression tasks, 
averaged over 5 runs per model. The classical models (marked with 
a c_ preposition) were selected to have a similar number of trainable 
parameters to the best quantum models to enable a fair comparison. 
For the classical models, the _i post-fix denotes the input dimension 

of the second layer. Each subgraph shows one of the regressed aero-
elastic parameters. The numbers below the graphs show the number 
of trainable parameters: T refers to the trainable MPO, Q denotes the 
VQC for the quantum networks, and C for their classical counterparts 
used
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for aeroelastic problems. By addressing the challenges and 
limitations identified in this work, we can unlock the full 
potential of these algorithms and explore their applications 
in more complex and realistic scenarios.
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