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Abstract

We investigate the application of hybrid quantum tensor networks to aeroelastic problems, harnessing the power of
Quantum Machine Learning (QML). By combining tensor networks with variational quantum circuits, we demonstrate
the potential of QML to tackle complex time series classification and regression tasks. Our results showcase the ability
of hybrid quantum tensor networks to achieve high accuracy in binary classification. Furthermore, we observe promis-
ing performance in regressing discrete variables. While hyperparameter selection remains a challenge, requiring careful
optimisation to unlock the full potential of these models, this work contributes significantly to the development of QML
for solving intricate problems in aeroelasticity. We present an end-to-end trainable hybrid algorithm. We first encode time
series into tensor networks to then utilise trainable tensor networks for dimensionality reduction, and convert the resulting
tensor to a quantum circuit in the encoding step. Then, a tensor network inspired trainable variational quantum circuit is

applied to solve either a classification or a multivariate or univariate regression task in the aeroelasticity domain.

Keywords Tensor networks - Quantum machine learning - Hybrid machine learning - Variational quantum circuits

1 Introduction

Simulations of aeroelastic phenomena involve modelling
complex fluid dynamics and the structural behaviour of
components. For modern aircraft design, a detailed level of
fidelity in the modelling of complex aeroelastic phenomena
is essential. Increasing modelling fidelity leads to the need
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of resolving ever finer grids leading to an enormous com-
putational effort for the numerical simulations. Therefore,
finding efficient implementations is a key research field in
aeroelastics. In particular, this involves developing tech-
niques for the reduced order modelling of nonlinear aero-
dynamics. These techniques need to consider the complex
nonlinear behaviour originated by the compressible, viscous
and turbulent flow phenomena while not needing to simu-
late this behaviour on each grid point. Inherent difficulties
are the nonlinear dependence and the high-dimensionality
regarding the phase space on the grid required in order to
describe such features.

Data driven implementations using machine-learn-
ing algorithms for aeroelastic simulations are currently
under development as possible solutions to these require-
ments (Sabater et al. 2022; Zahn and Breitsamter 2022).
Recently there has also been an increasing interest in utilis-
ing quantum computation and tensor network approaches
(both on classical and quantum hardware) for Machine
Learning (ML) (Stoudenmire and Schwab 2016; Reyes and
Stoudenmire 2020; Dilip et al. 2022; Shen et al. 2024; Hug-
gins et al. 2019). Therefore, we investigated the prospect of
using hybrid quantum tensor network based algorithms for
aeroelastic problems.
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A wide variety of QML approaches employing quan-
tum circuits with tunable parameterised gates, so called
Variational Quantum Circuits (VQCs), have recently been
proposed (Schuld et al. 2021). Quantum tensor networks
for ML can be realised by VQCs using a tensor network
inspired internal gate structure. Tensor Networks (TN) were
initially developed to reduce the computational cost of lowly
entangled multi-particle quantum states. Nevertheless, they
are able to efficiently approximate a wide variety of large
tensorial objects using a regular, less complex structure.
Thus, providing a convenient approach to QML (Rieser et
al. 2023).

While QML is generating increasing interest in cer-
tain heuristic cases where advantages are suspected, these
approaches often struggle to be described in the language
of quantum circuits (Huang et al. 2021). For realistic prob-
lems, we see the necessity to integrate quantum-enhanced
or based approaches into practical pipelines. Therefore,
our focus lies in developing an end-to-end trainable hybrid
Quantum Tensor Networks (QTN) approach.

This work seeks to investigate the potential benefits and
limitations of hybrid QTN methods for realistic aeroelastic
problems, with a focus on understanding their capabilities
and constraints rather than directly searching for quantum
advantages. By doing so, we aim to provide a compre-
hensive framework for the development of more effective
hybrid QTN algorithms, ultimately contributing to the
advancement of machine learning techniques for complex
aeroelastic simulations and informing future research direc-
tions in this field.

Our approach emphasizes in particular efficient data
encoding into quantum circuits for hybrid QML methods.
Efficient encoding is a crucial step in QML. Recently, two
promising approaches have emerged: pre-training quantum
circuits to approximately encode data (Shen et al. 2024),
and using TNs based encoding techniques to exactly encode
data into quantum circuits (Ran 2020). However, these tech-
niques have previously been used as preprocessing steps,
where data is encoded once and then used as input for train-
able quantum circuits. In contrast, our approach integrates
the TN-based encoding into a fully end-to-end trainable
hybrid algorithm. This approach entails a TN decomposi-
tion of the classical step to quantum gates, as explained in
Subsection 2.2.

Our setup enhances current QML algorithms by combin-
ing three key components: a trainable TN-based dimension-
ality reduction, TN-based data encoding, and a trainable
TN-inspired VQC (Shen et al. 2024), as explained in Sub-
section 2.3. This integrated approach enables end-to-end
training using a single classical optimiser, allowing us to
solve regression and classification tasks. An additional
major technical contribution is the inclusion into a thorough
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state-of-the-art machine learning pipeline, including optimi-
sation tools, mini-batch training and hyperparameter search
with cross-validation.

2 Methods
2.1 Aeroelastic application

Classical tensor networks have various application sce-
narios within aeroelastics (Batselier et al. 2017). Relevant
applications include data-driven aeroservoelasticity or the
computation of dynamic loads resulting in an airframe of
a manoeuvring aircraft (Jia et al. 2022). Within this field,
nonlinear effects originating either from the structural or
aerodynamic counterparts or a combination of them are of
importance. The overall goal is to derive models from data
which are able to predict aeroelastic characteristics (includ-
ing damping) and thus, the stability behaviour of the sys-
tem (Boswald et al. 2017).

One problem of particular interest in aeroelasticity is the
determination of the flutter stability. To determine the stabil-
ity, the feedback interaction between the structure and the
aerodynamic forces has to be considered including inertial
and elastic forces. We use a simplified aeroelastic configu-
ration including a low-dimensional aerodynamic model for
investigating the potential of QML for estimating the flutter
stability of the system, based on Quero et al. (2019).

The selected case comprises a typical aeroelastic section
of a wing with three degrees of freedom including heave /4
(positive downwards), pitch 6 (positive nose up) around the
elastic axis location and an aileron rotation (3 (positive with
trailing edge down) (Tewari 2015). No assumption regard-
ing the flow physics has been made and thus the methods
are entirely data-driven, similar to Rauseo et al. (2021). The
corresponding aeroelastic equations of motion are given by
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where the structural damping has been neglected. The aero-
dynamic forces acting upon the structure are represented by
the lift coefficient ¢;, the pitching moment at the elastic axis
¢m and the hinge moment at the aileron hinge axis cg. A
set of parameters has been chosen to be constant and their
values are specified in Table 1, where the non-dimensional
distances are obtained upon dividing by the reference length
Lycs. Table 2 shows the variation of parameters carried out
for the applications described next.
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Equation 1 cannot be directly numerically integrated in
time, as the aerodynamic coefficients are provided in the
frequency-domain. When considering incompressible two-
dimensional unsteady potential flow, they are provided in the
frequency domain as irrational functions of the frequency.
Thus, a specific procedure is applied in order to transform it
into a state-space representation (Quero et al. 2019), which
can finally be numerically integrated in time with a common
ordinary-differential equation (ODE) solver:
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where up = [h/Lyes 0 B]T and x, contains the resulting
aerodynamic states. For details on the matrices A, and C,,
the interested reader is referred to Quero et al. (2019). Once
written in this form, the eigenvalues of the matrix A, deter-
mine the flutter stability of the aeroelastic system, which
is then dependent on the value of the parameters given in
Table 2, provided the parameters in Table 1 haven been fixed.

The goal of this application case is to apply hybrid
quantum algorithms to the tasks of stability classification
based on time series and regression of parameters from a
time series. The stability of the system described in Eq. 1
is considered when subjected to non-zero initial conditions.
In particular, the initial value of the first state component
corresponding to a heave displacement is set to 1. Note that

Table 1 Constant parameters

Description Parameter  Value

Reference length Lyet 0.5 (m)

Uncoupled heave natural frequency wn 50
(rad/s)

Uncoupled pitch natural frequency we 100
(rad/s)

Uncoupled aileron natural frequency ws 300
(rad/s)

Non-dimensional distance from e.a. to the 2o 0.2

airfoil c.g.

Non-dimensional distance aileron h.a. to 25 0.0125

aileron c.g.

Non-dimensional airfoil radius of gyration re V035

about e.a.

Non-dimensional aileron radius of gyration . 5 /0.00625

about aileron h.a.

Non-dimensional distance between the c 0.5

midchord and the aileron h.a.

Centre of gravity is denoted by c.g., elastic axis by e.a., and hinge
axis by h.a

Table 2 Varied parameters

Parameter Interval Increment
Non-dimensional distance

—0.4,0.4 =0.
between midchord and e.a. a €[-04,0.4) Aa=01
Mass ratio 1 € [10,50] Ap=0.1
Airspeed Uss € [150,350] (mvs) A Uoso = 1(m/s)

Elastic axis is denoted by e.a

the physical magnitude is not of relevance here, as Eq. 2 is
linear with respect to the states. Four representative time
histories are provided in Fig. 1, where two stable and unsta-
ble cases each are represented for different combinations of
the parameters (a, 11, Us ), the three time series describe the
response on each degrees of freedom (4, 0, ).

2.2 TN based preprocessing and encoding

Classical Tensor Networks (CTNs) have various applica-
tions within aeroelastics, such as aeroelastic system iden-
tification. The goal is to derive data driven models which
enable the prediction of aeroelastic characteristics including
the stability behaviour of the system (Boswald et al. 2017).

Tensor Networks were originally conceptualised to
facilitate the simulation of Quantum Many-Body Systems
by reducing the amount of correlations inside a quantum
state (Wall et al. 2022). They are a set of tensor objects con-
nected with each other in a specific layout through index
contraction. Several different regular tensor network layouts
with varying dimensionality have been studied. The most
common ansatz is the Matrix Product State (MPS) (Fannes
et al. 1992) shown in the first row of Fig. 2. Other layouts
are tree tensor networks (TTN) (Murg et al. 2015), MERA
networks (Vidal 2007), which are trees with entangled
branches and two-dimensional PEPS networks (Sierra and
Martin-Delgado 1998).

The aforementioned TNs, are a powerful tool for rep-
resenting complex data structures, enabling the efficient
manipulation of classical and quantum systems. By apply-
ing Tensor Network Operators (TNOs), it is possible to per-
form operations on data in TN format, effectively modifying
the underlying structure. TNOs represent local linear trans-
formations, akin to matrix multiplications, which can be
applied to specific sections of the TN. For instance, MPSs
can be transformed using Matrix Product Operators (MPOs),
which are defined by introducing an additional free index
at each site, where one is considered the upper index (free
input index) and lower index (free output index). By con-
tracting the input indices of the MPO with those of the MPS,
a new, transformed MPS is produced from the free output
indices, allowing for efficient manipulation and analysis of
complex data structures.

@ Springer
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Fig. 1 Prototypical aeroelastic time a=-0.1 a=0 a=—0.2 a=—0.1
: =20 =50 =>50 n=10
series responses for each degree qf U = 153 U = 164 U — 954 U =338
freedom for four sets of aeroelastic Norm = 0.46 Norm = 0.71 Norm = 0.93 Norm = 3.00

parameters. The two on the left 1- 1-
are stable and the two on the right
unstable response -

When choosing a tensor network type for a specific task,
it is crucial to take the scaling behaviour of the task into
account. While one-dimensional data like time series are
handled well using MPS, images require a two-dimensional
scaling of the information entropy in the worst case. In this
study, we focus on time series therefore a one-dimensional
MPS layout is well suited. In an MPS two additional hyper-
parameters can be chosen: the bond dimension which is
determined by the number of qubits passed on from each
node to the next, and the number of data qubits that are
passed to the circuit at each iteration.

A Quantum Tensor Networks (QTN) is a TN that represents
a compressed version of a quantum state implying that the TN
is primarily under the normalisation condition. One additional
property relevant for this work is that a canonically gauged one-
dimensional QTN can be mapped to a quantum circuit (Ran
2020; Liu et al. 2019; Huggins et al. 2019). Once in canonical
gauge, the majority of its tensors are isometries which can be

Fig.2 QTN quantum circuit map-
ping example of a MPS represent-
ing a quantum state where the bond
dimension increases exponentially
to the centre bond. Here, the main
phases are highlighted: the can-
onisation already leaves 3 tensors
as unitary gates (blue squares), 2
tensors as isometries (blue circles)
and 1 orthogonality centre repre-
senting essentially a normalised
vector (green circle); the kernel
acquisition step ensures that the
full unitary gates can be found and

Canonization

Kernel Aquisition

the beginning of the quantum wires
can be assigned with the zero-state

Q40004

converted into unitary gates with some linear algebra kernel
acquisition technique (Ran 2020). In other words, the output of
such circuit of unitaries reflecting the one-dimensional layout,
is the quantum state encoded by the QTN. Figure 2, shows the
mapping of a canonised MPS, to a quantum circuit.

TNs already found their way into applications within
classical machine learning (Reyes and Stoudenmire 2020).
For instance, here a CTN can represent an input vector, a
linear operator or encode non-linear functions while ben-
efiting from local operators that preserve a compressed
representation of the problem at hand. At the expense of a
normalisation constant, a CTN can be transformed into a
QTN, for it to subsequently be mapped to a quantum circuit.

For our use case, the input data consists of a three-dimen-
sional time series described in Subsection 2.1. The time
series have a wide range of values with the converging ones
usually being in the range of 1 but the diverging one can
take values over £5 x 10199, As a first step we normalise

Q 0) 10) o) [0) o) o)
|0) | | | I | |
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each group of time series as one, i.e. concatenate all three
time series, normalise the resulting one and then separate
them again. This way the amplitude relation between each
dimension of the time series remains unchanged. Each data
point, i.e. each group of three time series for a set of aero-
elastic parameters (a, i1, Us), is normalised independently
and the norms (re-scaled to [0, 7r]) are saved to be utilised as
an input to the quantum circuit.

As quantum mechanics is a linear theory, nonlinear behav-
iour can only be introduced by interactions with the classical
environment, e.g. by carrying out measurements or during
encoding of the normalised inputs x using some encoding
map P(x) (Yan et al. 2015). Finding the right encoding
strategy for a QML application is often a difficult task. A
variety of methods have been developed which lie between
the two extremes: “qubit efficient”, realised by amplitude
encoding, and “gate efficient”, realised by binary encoding.
In this work, we decided to use a tensor network operator to

Fig. 3 Preprocessing and encod-
ing structure. First we encode the
three time series comprising each
data point into an MPS. We then
apply an MPO based dimensional-

reduce the dimensionality of the data and learn the encoding
to be deployed on the quantum circuit, as shown in Fig. 3.
Additionally, tensor networks mapped to quantum circuits
can have qubit efficient representations (Rieser et al. 2023).

Due to the one-dimensional structure of the time series,
tensor networks and specifically MPS are well suited to
express this type of data (Rieser et al. 2023). To improve
the compatibility of our data with TNs, we preprocessed the
original time series by upsampling it from 201 time steps
to 3% = 243 using smoothing B-splines. This upsampling
enables an efficient decomposition into a 5-node MPS with
free indices of dimension 3, allowing for a compact repre-
sentation of the data. An additional free index is introduced
to select one of the three time series, effectively encoding
the time series dimension. The preprocessing steps are illus-
trated in the first row of Fig. 3.

This MPS is contracted with a subsequent trainable MPO
that aims to reduce the dimensionality of the input MPS and

ity reduction and non-linearities.
Finally we disentangle the resulting

............. ",

i Indices for the time series.

v

TN into a quantum circuit

Input MPS

Trainable MPO

1st Layer

2nd Layer

lllllllll LTI o

SVD

1
( Normalisation & Disentanglers )
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learns the optimal encoding scheme to the quantum circuit.
For this purpose, the MPO has 6 free input indices of dimen-
sion 3 and 8 free output indices of dimension 2. The dimen-
sion of the MPO’s internal bonds can be adjusted to carry
more trainable parameters and potentially add more correla-
tions to the data, thus being considered a hyper-parameter.
Naturally, the output of this contraction is another MPS with
8 free indices of dimension 2. To improve the expressivity,
we applied a tanh nonlinearity on the resulting MPS param-
eters before normalisation.

Since one of the objectives of this preprocessing step is to
learn what to encode in the quantum circuit, this output CTN
still needs to be converted into a QTN which can be done by
normalising it (Dborin et al. 2022). We then used the tech-
nique shown in Ran (2020), to map it into a quantum circuit.
This technique adds layers of cascading 2-qubit gates that
have the ability to progressively disentangle the state rep-
resented by the output of the MPO (except for a normalisa-
tion constant) to the zero-state |00...), hence being called
Matrix Product Disentangler (MPD). From another perspec-
tive, inverting the order of these layers and transpose-conju-
gating every unitary, the layers will progressively entangle
the state |00...) until the desired state is reached. The more
layers there are, the more correlations/entanglement can be
achieved in the state. Therefore, the number of MPD layers
is considered a hyper-parameter in this set-up for gradually
adjusting the entanglement of the input state to the VQC
circuit. The complete procedure is shown in Fig. 3.

2.3 TN inspired VQC classifier

Once we have the data encoded into a quantum circuit, the
next step is to process it using QML. Quantum computa-
tion in general and QML in particular are still in very early
stages of development. Today, most quantum algorithms
are written on a circuit level. When designing a quantum

Fig. 4 Typical layout for an MPS

Norm encodings

circuit, choices on a very basic level must be made, e.g. the
data encoding circuit, entangling schemes and the measure-
ment processes. As it is not clear to date which choices are
most relevant for the quantum machine learning application
we carried out a comprehensive hyperparameter search.

A VQC is a quantum circuit with gates that feature tun-
able parameters, usually rotational gates. A general varia-
tional unitary can be decomposed into a combination of
rotation and entangling gates like the CNOT. A common
category of VQC architectures for machine learning are lay-
ered VQCs. Here, the circuit consists of encoding blocks
that map the data to the circuit, and variational blocks which
entangle the qubits and introduce the optimisable param-
eters. To increase expressivity, these blocks are executed
repeatedly (Schuld et al. 2021).

Another approach is to employ a QTN for machine learn-
ing using parameterised gates, often also called TN inspired
ansatz. It is a variety of VQC that carries a tensor network
based internal gate structure (Dilip et al. 2022). The con-
struction of the tensor network approach using “states” and
“operators” makes it straightforward to translate the concept
to quantum computation as seen in Fig. 4. Both are realised
by a set of parameterised multi-qubit gates where the only
difference between states and operators is whether the gates
have only incoming or outgoing free bonds or both.

To make use of the capabilities of quantum computers,
the individual qubits have to be entangled by using multi-
qubit gates. These gates have several free parameters that
can be used to define how the incoming data is processed.
When kept trainable, they can act as parameters of machine
learning algorithms.

As shown in Fig. 4, we first encoded the data by using one
or more layers of arbitrary unitaries derived from the pre-
processing MPS through the disentangling process. Addi-
tionally, we encoded the norm of the original time series
obtained in the first normalisation step and the norm of the

3

! 4@’

inspired VQC for the regression
task measuring multiple qubits.

1-Processing Layer
.. | Classification/Regression

Here including Norm encoding
and using one encoding and one

U 1-Encoding Layer

SpecialUnitai

classification layer. Lastly a train-
able measurement layer is applied.
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SpecialUnitary

SpecialUnitary

u

6

U

SpecialUnitary

@ Springer

G( cialUnitary




Quantum Machine Intelligence (2025) 7:103

Page70of 13 103

resulting MPS as parameters of a general rotation on the
first qubit. Since otherwise, the information on the ampli-
tude relationship between time series would have been lost.

After the encoding, we applied a MPS inspired structure
constructed from iterated layers of two qubit gates (Dilip
et al. 2022; Jobst et al. 2024; Shen et al. 2024). For the
two qubit gates, we considered strongly entangling layers
on two qubits (Schuld et al. 2020) with 6 trainable param-
eters per gate and general SU(4) unitaries (Wiersema et al.
2024) with 15 trainable parameters per gate. For QTN, some
authors recommend shuffling the remaining virtual qubits
before measurement using a single layer of general rotations
on the qubits being measured (Shen et al. 2024).

The measurement which later can be interpreted as the
result of our machine learning algorithm can be performed
in several ways. For classification problems, the simplest
way is to chose one qubit as the output qubit. We mea-
sured the probabilities of the basis states on the last qubit
and interpreted them as class probabilities, which were then
compared against one hot encoded binary stability labels.

For the regression task, we measured either the expecta-
tion values of individual qubits or tensor product of pairs
of qubits to predict the aeroelastic parameters. To make the
comparison possible, we re-scaled the aeroelastic parameters
to the £1 range independently per feature. We investigate
univariate regression by predicting each of the aeroelastic
parameters with different models and multivariate regres-
sion by predicting all aeroelastic parameters at once. For
the latter case, we measured either three Z; observables or
three tensor products {Z; ® Z;};+; observables on non-
overlapping pairs of qubits and interpreted them as elements
of the target vector. Similarly for the univariate setup, we
only measured one observable.

Besides the architecture of the quantum circuit, other
parameters can be adjusted. There are several different clas-
sical optimisers that can be uses to train hybrid-quantum
circuits. The parameters of the MPO and VQC where then
jointly optimised using a classical optimiser through back-
propagation with auto-differentiation. We used the well
known Adam optimiser (Kingma and Ba 2017), which uses
global gradients. As loss functions, we used cross entropy
for the classification tasks, and the Huber loss (Huber 1964)
for the regression tasks.

The computations were performed using the
Quimb (Gray 2018) library for TNs, PennyLane (Berg-
holm et al. 2022) for quantum circuits and simulations, and
JaX (Bradbury et al. 2025) for the ML components. For sta-
tistical robustness we used cross validation, using the Shuf-
fleSplit method. We used the implementations provided in
the scikit-learn library (Pedregosa et al. 2011). Lastly we
used the Optuna (Akiba et al. 2019) hyperparameter search
framework.

For each hyperparameter configuration, a 5-fold cross
validation was carried out, using the methods previously
explained. At the end of each training, the maximum scores
per fold over all previous epochs of the metrics were aver-
aged and used as the objective value for the hyperparameter
search algorithm. We used the well known F} score for the
classification task and R? score for the regression task.

After conducting the hyperparameter search, we retrained
the best configuration for each task using the complete train-
ing set as folds, i.e. we ran the training 5 times with different
random seeds on the complete training dataset (training +
evaluation datasets used for the hyperparameter search), and
tested the trained models on the test set.

3 Results and discussion

After conducting an exhaustive hyperparameter search and
retraining the top-performing quantum models, we analysed
the results and evaluated various metrics to identify potential
bottlenecks and areas of improvement in order to gain insights
into the performance of our hybrid QTN approach. Further-
more, we also compared the results to those obtained using
Multilayer Perceptrons (MLPs) with a comparable number of
trainable parameters using two-layers. We begin by presenting
the results achieved by the quantum networks, followed by a
comparison to approximately equivalent classical counterparts.

We found that our hybrid TN inspired algorithm could
easily solve the binary time-series classification, achieving
a maximum F}-score of well above 0.9, averaged over 5
repeated training runs. The best model achieved a F}-score
of 0.998, as shown in the Confusion Matrices (CMs) in
Fig. 5. The models generalised very well, and we observed
no overfitting. We carried out a very limited hyperparameter
search, since we quickly found well performing configura-
tions. As it can be observed in the CMs, all training seeds
converged towards good results.

While doing the hyperparameter search, we could
observe that many configurations were unstable, achieving
significantly different results for each fold. Overall, several
configurations achieved good results, the best model used
only a small MPO bond dimension of 2 and only one disen-
tangling layer, but needed four TN inspired quantum clas-
sification layers. This hints at the majority of the processing
being done on the VQC side, for a highly compressed and
potential low-entanglement representation obtained through
the utilised MPO.

Our analysis of the training behaviour revealed that most
runs converged rapidly, with most models achieving opti-
mal performance within 5 epochs, with the amount of gradi-
ents updates depending on the utilised batch size. Although
this might suggest the presence of barren plateaus, a closer
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Run 0, F1 0.997 Run 1, F1 0.996 Run 2, F1 0.993 Run 3, F1 0.998 Run 4, F1 0.995
=0 S 0.0024 | — 0.0031 | 0K = 0.0016 | — 0.0039
o] £ Qo < <o
o) o) [} o [}
= = = = =
=N = = = =

Q

Q
Predicted label

Q
Predicted label

N
Predicted label

N

Q
Predicted label

Q
Predicted label

N N N

Fig.5 F1 confusion matrices on the test set for the best model for the classification task, for 5 different random training seeds

examination of the gradient variance showed that the quan-
tum part of the model exhibited a tendency towards zero, but
did not completely disappear. In contrast, the gradients of the
MPO displayed more instability, with some values converging
towards zero before spiking up and then returning to near zero.
Despite this unusual behaviour, the classifier achieved out-
standing results. This behaviour calls for an in depth analysis
of the loss landscape, and in particular the relations between
the hyperparameters and the trainability of the models.

The test behaviour over training epochs for the best
hyperparameter configuration on the classification task, as
shown on the left side of Fig. 6, demonstrate rapid conver-
gence, with approximately 2 epochs required to achieve
stable performance. This corresponds to around 114 mini-
batch gradient updates, for the selected batch size of 128.
Notably, the models’ performance did not degrade over pro-
longed training. Furthermore, the initial spread of F1 values
at epoch 0, reflects the impact of different weight initialisa-
tion. However, as training progressed, all models converged
to remarkable results, suggesting that the optimisation pro-
cess was robust and effective.

For the regression task, we used the same TN inspired
VQC algorithm as for classification, with adjustments for
the number of measured qubits and the type of measurement
carried out. As described in Subsection 2.3, the main differ-
ence is that we measured expectation values instead of basis
state probabilities. Since we require more granular control
over the predictions.

Fig.6 Test F1 score (left) and test

Overall, the regression task exhibited less stability, par-
ticularly for multivariate regression, as shown in the right
side of Fig. 6. The univariate regression results were signifi-
cantly better, as depicted in Figs. 7 and 8.

A notable observation from the hyperparameter search
was that some multivariate configurations achieved near-
optimal performance on specific target parameters (one
of a,p or Uy), comparable to those of univariate mod-
els. However, these models often predicted a single target
dimension well while failing to accurately predict others.
Nevertheless, the best multivariate model achieved a more
balanced performance, albeit with a slightly lower R?
score per target dimension. This suggests that the model
was able to capture only certain aspects of the data, but not
everything necessary for performing all three regressions
at once.

In contrast, the models trained in a univariate fashion, i.e.
to predict only a single target dimension, achieved outstand-
ing results. Notably, different hyperparameter configura-
tions yielded the best results for different target dimensions,
suggesting that the chosen ansatz lacked flexibility. This
may be attributed to the lack of trainable non-linearities.

As observed in Figs. 7 and 8, the repeated runs for differ-
ent seeds exhibited good convergence, but with a consider-
able spread. This variability implies that better initialisation
techniques are needed. Our results indicate that using a noisy
identity initialisation led to more stable results compared to a
random uniformly distributed initialisation. However, a more

R? score (right) values over train-
ing epochs for 5 different training 0.95-
seed of the best classification (left)
and multivariate regression (right)
model

epoch
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Fig. 7 Test regression score for the Multivariate
best model for the multivariate and
univariate regression task, aver-
aged over 5 runs of each model.
Each column represents different
prediction targets, and the labels at
the bottom represent the targets the

model was trained to predict

all

Fig. 8 Test regression score for a
the best model for the multivariate

and univariate regression task over 0.8-

training epochs, averaged over 5
runs of each model. Each column
represents different prediction
targets

Test R? Score

0.2- —— Multivariate

Univariate

0 20 )
epoch

in-depth analysis is required to isolate the factors contributing
to this behaviour.

An interesting observation was made when examining
the test R? scores during training of the best selected model,
shown in Fig. 8. The multivariate model initially performed
well on the a-dimension, but then its performance degraded.
Conversely, the other two dimensions (¢ and Us,) showed
improvement, suggesting that the model was learning to
balance its predictions. This phenomenon may indicate that
the model was initially over-specialised to one dimension
and then generalised to the others. This behaviour could
indicate at a lack of expressibility of the model, or the hard-
ness of the multivariate regression task.

The multivariate models exhibited a significantly wider
spread across the 5 different training seeds compared to the
univariate setup. Notably, the two setups displayed oppos-
ing trends in variance over time. The multivariate model
showed relative stability at epoch 10, followed by a signifi-
cant divergence, particularly for the ¢ and p dimensions. In
contrast, the univariate models demonstrated a reduction in
variance over advanced training epochs.

The difference on the R? scores for multivariate regres-
sion and the reason the hyperparameter configurations differ
for each univariate setup can be explained by the different

Target a Target Uy

I S

Target p

all a all i all UX

0 20 10 0 20 10
epoch epoch

granularity of each component: a has 9 distinct values,
has 5 and U, has 201. The score difference between a and
1 could be explained by the former having enough values
to better cover the normed target value range, resulting in
smaller errors between predictions and targets.

The regression task proved to be considerably more
challenging than the classification task. The prediction
of discrete variables with multiple possible values using
expectation values of observables is a more complex task
than binary classification. The model struggled to accurately
predict the values, and the random initialisation of the mod-
els resulted in significant variability in performance.

In particular, we observed that for the cross validation
some runs of the same configuration worked out well while
others did not converge to a good score. This behaviour
could be explained by instabilities arising from the data
points randomly selected for each cross-validation fold, i.e.
the failure to generalise from specific subsets of the data-
set. This may be mitigated by using more than five runs,
i.e. using more folds, per configuration. Although, steeply
increasing the resources requirements accordingly. The sec-
ond possibility would be to theoretically investigate the loss
landscapes and initialisation of such quantum circuits and
use these results to begin with better initial conditions.
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The analysis of hyperparameter importance revealed
similarities between the classification and regression tasks,
as well as between the two regression setups. Overall, the
interpretation of the hyperparameter search results was
challenging due to the high spread for single hyperparam-
eter values. This lead to the conclusion that not single, but
combinations of hyperparameters have a significant impact
on the model’s performance.

We used four parameter importance estimators, namely
fANOVA (Hutter et al. 2014), Shapley TreeExplainer (Lun-
dberg et al. 2020), Mean Decrease Impurity (MDI) (Agar-
wal et al. 2023), and PED-ANOVA (Watanabe et al. 2023)
to select a subset of most important hyperparameters. The
results showed that in almost all cases the number of quantum
processing layers, the learning rate, and the chosen quantum
ansatz were the most significant contributors to the model’s
performance, except for the univariate a model were instead
of quantum layers the MPO bond dimension played a role.

These observations suggest that the VQCs play a crucial
role in determining the model’s performance. Two possible
interpretations are that either the VQCs are doing most of
the processing, and their performance is heavily influenced
by these hyperparameters. Or, alternatively, the VQCs may
be a bottleneck towards the model’s information processing
capacity. Especially for the more complex regression tasks
since the classification tasks could be perfectly solved.

On the other hand, the results also suggest that the MPO
parameters have a limited impact on the model’s perfor-
mance. This could either mean that all tested configurations
discard too much data leading to the quantum part having to
do the heavy lifting, or that they provide enough flexibility
to adapt to the needed information content.

The analysis highlights the importance of hyperparam-
eter tuning and the need for further investigation: An in-
depth ablation study would be necessary to fully understand
the impact of these hyperparameters on the model’s perfor-
mance. Finding out what would be the best way to improve
the synergies of the classical, TNs, hyperparameters with
the quantum circuit hyperparameters remains challenging,
and an in depth information theoretical analysis is needed.

To compare the performance of our quantum approach
with a classical setup, we carried out a comprehensive
evaluation after selecting and retraining the best quantum
models. Ensuring a fair comparison between quantum and
classical models is a challenging task, which remains an
open question in the field. To make the comparison as fair as
possible, we used the same training setup up to the disentan-
gling step of the framework described in Fig. 3. We chose a
two-layer Multilayer Perceptron (MLP) architecture for the
classical model allowing for non-linear hidden activations.
We adjusted the dimension of the hidden representation
to achieve a comparable number of trainable parameters

@ Springer

with the selected quantum model for each task. The out-
put activation functions used were softmax for classification
and fanh for regression, analogous to the probabilities and
expectation values obtained from the quantum model.

For the classical network, we used the same MPO setup
but contracted the final MPS instead of building disentangler
layers. This yielded a 256-dimensional feature vector. Similar
to the quantum case, we added the norm of the original time
series and the norm of the MPO, resulting in a 258-dimen-
sional input vector for the classical network. By doing so,
we ensured that the number of trainable parameters for the
MPO remained equal for both the quantum and classical net-
works. Furthermore, the output dimension of the last layer was
adapted to accommodate the specific task requirements, with
a single output for classification and univariate regression, and
a three-dimensional output for multivariate regression, com-
parable to the quantum model as described in Subsection 2.3.

After conducting a hyperparameter search, we selected
the best models with similar numbers of trainable parame-
ters. Notably, all tasks exhibited optimal performance when
using an elu activation function (Clevert et al. 2016) in the
hidden layer. For the binary classification task, the quantum
models achieved perfect results, and consequently, no sig-
nificant differences were observed when comparing with the
classical networks. In contrast, the regression tasks exhib-
ited mixed behaviour, as illustrated in Fig. 9.

A key difference between the classical and quantum models
is the reduced spread of results obtained from the classical net-
works, which highlights the need for improved initialisation
and convergence analysis of quantum models. The classical
networks demonstrated slightly better performance overall.
Interestingly one can observe a big improvement in the a
and p dimensions, but worse results on the U, dimension
when analysing each dimension of the multivariate regression
individually. On the other hand, the multivariate regression
results were better for the classical model. The general behav-
iour and “hardness” of each dimension were similar for both
paradigms. For univariate regression, the classical methods
showed slightly better results across all dimensions.

It is worth mentioning that for the univariate regression of
the a target, we could not obtain a classical model with a com-
parable number of trainable parameters due to the extremely
small size of the quantum model. As a result, the improved per-
formance of the classical setup required approximately ~ 70%
more trainable parameters. Nevertheless, in the hyperparame-
ter search for the quantum model, there were setups using more
trainable parameters that did not achieve better results.

A fundamental challenge in comparing the two paradigms
lies in how information is transferred from the TN based
preprocessing to the respective neural networks. Since we
contracted the resulting MPS for the classical network, this
can be viewed as equivalent to having an exponentially large
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Fig. 9 Test regression scores for the best quantum and comparable
classical models on the multivariate and univariate regression tasks,
averaged over 5 runs per model. The classical models (marked with
a c_ preposition) were selected to have a similar number of trainable
parameters to the best quantum models to enable a fair comparison.
For the classical models, the ¢ post-fix denotes the input dimension

number of disentangling layers, whereas our quantum setup
used only 2 to 8 layers due to computational constraints. The
implementation of additional disentangling layers for the
quantum setup was prohibitively expensive, representing a
significant bottleneck in our current approach. Addressing
this limitation will be a key focus of future work.

Overall, we show that realistic regression problems can
be tackled by hybrid QML approaches and the results pro-
vide valuable insights into the importance of hyperparam-
eter tuning and the challenges of optimising VQCs. Further
research is needed to fully understand the impact of these
hyperparameters on the model’s performance.

4 Conclusion and future work

In conclusion, our study demonstrates the successful
application of hybrid quantum tensor network-based algo-
rithms to aeroelastic problems. By integrating three key

Target a
—_—
T ==
all a call 2 ca?
T:144 T:144 T:144 T:144
Q:489 Q:123 C:527 C:521
Target Uso
h ]
==
oé i
all b“",>L call 2 (,',l,",x 4
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Q:489 Q:966 C:527 C:1041

of the second layer. Each subgraph shows one of the regressed aero-
elastic parameters. The numbers below the graphs show the number
of trainable parameters: T refers to the trainable MPO, Q denotes the
VQC for the quantum networks, and C for their classical counterparts
used

components - trainable TN-based dimensionality reduc-
tion, TN-based data encoding, and a trainable TN-inspired
VQC - we enable end-to-end training using a single classi-
cal optimiser, eliminating the need for pre-training circuit
representations for each data point.

We could solve the binary classification task perfectly,
and achieved promising results for the time series multivari-
ate and univariate regression tasks. Although, the optimal
choice of hyperparameters remains a challenge.

The main limitation of our current setup lies in the com-
putationally prohibitively expensive implementation of dis-
entangling layers. The resources needed for each subsequent
layer increase very rapidly, and since we are creating them
in each forward pass and using cross-validation in parallel,
this severely limits the number of disentangling layers that
could be used. This leads to the VQCs only using an estima-
tion of the MPO, which could represent a bottleneck in the
expressivity of our framework. However, since it is trained
end-to-end, it is possible that the system learns to pass the
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necessary information despite this limitation. To address
this issue, we propose exploring more efficient methods
for implementing disentangling layers or developing novel
algorithms for encoding TNs into VQCs. Additionally, we
plan to conduct an in-depth analysis from an information
theory point of view to better understand the effects of the
encoding setup.

Further future research directions include conducting an
in-depth ablation study to explore the relationship between
encoding parameters, such as bond dimension and number
of disentangling layers, and the expressivity of the circuit.
The classification task results suggest that entanglement/
correlations in the compressed encoding data may not be
essential for the classifier. However, it is unclear what por-
tion of the Hilbert space the classifier/regressor accesses,
potentially leaving room for improvement with encodings
that offer more entanglement - a unique property of quan-
tum computing. To clarify this point, future work will focus
on analysing the TN representation of the processing layers,
including examining the bond dimension of the TN repre-
sentation of the quantum circuit, which provides insights
into the amount of correlations present in the system.

To further improve the performance of our hybrid model,
we recognise the need to introduce more non-linearities into
the hybrid model. This is a natural problem that occurs in quan-
tum mechanics, being, at its core, a linear theory. To address
this, we propose exploring techniques that interact with a clas-
sical environment, such as encoding, data re-uploading (Pérez-
Salinas et al. 2020), natural noise models, or analogue mode
operations present in Noisy Intermediate Scale Quantum
(NISQ) devices. These approaches have the potential to add
sufficient non-linearities to the hybrid QML pipeline, leading
to improved performance on aeroelastic problems.

In this work, we aimed to investigate the potential ben-
efits and limitations of hybrid QTN methods for realistic
aeroelastic problems, with a focus on understanding their
capabilities and constraints rather than searching for quan-
tum advantages. While our results show similar behaviour
between quantum and classical methods, we did not find
potential quantum advantages in this study. However, these
advantages prove to be notoriously hard to find in realistic
applications. Therefore, our main goal lies in presenting a
novel framework for end-to-end hybrid QTNs, which can
be applied to a wide range of tasks and use cases. To fully
realise the potential of these methods, we plan to do an in
depth analysis of the scalability and performance of our
approach in large realistic datasets. This may ultimately lead
to identifying quantum advantages, particularly in terms of
the amount of training data required and the representation
power of Quantum Neural Networks.

Overall, this study provides a foundation for future
research in hybrid quantum tensor network-based algorithms

@ Springer

for aeroelastic problems. By addressing the challenges and
limitations identified in this work, we can unlock the full
potential of these algorithms and explore their applications
in more complex and realistic scenarios.
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