Rings, Thorsten und Ben Salem, Bilel und Lambert, Baptiste und Gerhardus, Andreas (2025) Root Cause Analysis in Causal Anomaly Detection. WAW Machine Learning 11, 2025-10-28 - 2025-10-30, Oberpfaffenhofen, Deutschland.
|
PDF
- Nur DLR-intern zugänglich
987kB |
Kurzfassung
The rapid growth of big data has amplified the importance of reliable anomaly detection, particularly in complex technical systems susceptible to malign anoamlies. While most existing approaches rely heavily either on statistical properties and manual inspection often unfeasable for big data or opaque deep learning, we propose a novel framework for causal anomaly detection that integrates data-driven anomaly identification with causal reasoning. The method consists of three stages: (i) anomaly detection directly on time series of system variables, followed by flagging variables exhibiting anomalous behavior; (ii) causal discovery, where the underlying causal structure of the system is derived in the form of a causal graph; and (iii) root cause analysis, which traces the propagation of anomalies backward through the causal structure to identify their origins. We here concentrate on the third stage of this process and present results from a case study on satellite telemetry data to demonstrate the effectiveness of this approach. We highlight its potential for advancing anomaly detection in complex, safety-critical domains.
| elib-URL des Eintrags: | https://elib.dlr.de/218615/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
| Titel: | Root Cause Analysis in Causal Anomaly Detection | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | Oktober 2025 | ||||||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | anomaly detection, root cause analysis, causal inference, satellite telemetry | ||||||||||||||||||||
| Veranstaltungstitel: | WAW Machine Learning 11 | ||||||||||||||||||||
| Veranstaltungsort: | Oberpfaffenhofen, Deutschland | ||||||||||||||||||||
| Veranstaltungsart: | Workshop | ||||||||||||||||||||
| Veranstaltungsbeginn: | 28 Oktober 2025 | ||||||||||||||||||||
| Veranstaltungsende: | 30 Oktober 2025 | ||||||||||||||||||||
| Veranstalter : | DLR Institut für Methodik der Fernerkundung, DLR Institut für Robotik und Mechatronik und DLR Institut für Hochfrequenztechnik und Radarsysteme | ||||||||||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||
| DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | D - CausalAnomalies | ||||||||||||||||||||
| Standort: | Jena | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||||||
| Hinterlegt von: | Rings, Thorsten | ||||||||||||||||||||
| Hinterlegt am: | 12 Nov 2025 14:24 | ||||||||||||||||||||
| Letzte Änderung: | 12 Nov 2025 14:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags