elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Towards Explainable Machine Learning from Remote Sensing to Medical Images—Merging Medical and Environmental Data into Public Health Knowledge Maps

Bilteanu, Liviu Luca und Dumitru, Corneliu Octavian und Dumachi, Andreea und Alexandrescu, Florin und Popa, Radu und Buiu, Octavian und Iren Serban, Andreea (2025) Towards Explainable Machine Learning from Remote Sensing to Medical Images—Merging Medical and Environmental Data into Public Health Knowledge Maps. Machine Learning and Knowledge Extraction, 7 (4), Seiten 1-41. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/make7040140. ISSN 2504-4990.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
33MB

Offizielle URL: https://www.mdpi.com/2504-4990/7/4/140

Kurzfassung

Both remote sensing and medical fields benefited a lot from the machine learning methods, originally developed for computer vision and multimedia. We investigate the applicability of the same data mining-based machine learning (ML) techniques for exploring the structure of both Earth observation (EO) and medical image data. Support Vector Machine (SVM) is an explainable active learning tool to discover the semantic relations between the EO image content classes, extending this technique further to medical images of various types. The EO image dataset was acquired by multispectral and radar sensors (WorldView-2, Sentinel-2, TerraSAR-X, Sentinel-1, RADARSAT-2, and Gaofen-3) from four different urban areas. In addition, medical images were acquired by camera, microscope, and computed tomography (CT). The methodology has been tested by several experts, and the semantic classification results were checked by either comparing them with reference data or through the feedback given by these experts in the field. The accuracy of the results amounts to 95% for the satellite images and 85% for the medical images. This study opens the pathway to correlate the information extracted from the EO images (e.g., quality-of-life-related environmental data) with that extracted from medical images (e.g., medical imaging disease phenotypes) to obtain geographically refined results in epidemiology.

elib-URL des Eintrags:https://elib.dlr.de/218546/
Dokumentart:Zeitschriftenbeitrag
Titel:Towards Explainable Machine Learning from Remote Sensing to Medical Images—Merging Medical and Environmental Data into Public Health Knowledge Maps
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bilteanu, Liviu LucaIMT Bucharest, RomaniaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dumitru, Corneliu OctavianCorneliu.Dumitru (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dumachi, AndreeaIMT Bucharest, RomaniaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Alexandrescu, FlorinIMT Bucharest, RomaniaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Popa, RaduIMT Bucharest, RomaniaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Buiu, OctavianIMT Bucharest, RomaniaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Iren Serban, AndreeaUniversity of Agronomic Sciences and Veterinary Medicine, RomaniaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:6 November 2025
Erschienen in:Machine Learning and Knowledge Extraction
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:7
DOI:10.3390/make7040140
Seitenbereich:Seiten 1-41
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
Name der Reihe:MDPI
ISSN:2504-4990
Status:veröffentlicht
Stichwörter:machine learning; data mining; knowledge information; Earth observation images; medical imaging; semantics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Dumitru, Corneliu Octavian
Hinterlegt am:19 Nov 2025 13:15
Letzte Änderung:19 Nov 2025 13:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.