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Abstract

Both remote sensing and medical fields benefited a lot from the machine learning methods,
originally developed for computer vision and multimedia. We investigate the applicability
of the same data mining-based machine learning (ML) techniques for exploring the structure
of both Earth observation (EO) and medical image data. Support Vector Machine (SVM) is
an explainable active learning tool to discover the semantic relations between the EO image
content classes, extending this technique further to medical images of various types. The EO
image dataset was acquired by multispectral and radar sensors (WorldView-2, Sentinel-2,
TerraSAR-X, Sentinel-1, RADARSAT-2, and Gaofen-3) from four different urban areas. In
addition, medical images were acquired by camera, microscope, and computed tomography
(CT). The methodology has been tested by several experts, and the semantic classification
results were checked by either comparing them with reference data or through the feedback
given by these experts in the field. The accuracy of the results amounts to 95% for the
satellite images and 85% for the medical images. This study opens the pathway to correlate
the information extracted from the EO images (e.g., quality-of-life-related environmental
data) with that extracted from medical images (e.g., medical imaging disease phenotypes)
to obtain geographically refined results in epidemiology.

Keywords: machine learning; data mining; knowledge information; Earth observation
images; medical imaging; semantics

1. Introduction
In recent years, there has been a rapid increase in data available, where many data

sources have now reached the status of Big Data. For several years, we have been talking
about Big Data. Big Data can be described in five different ways (called the 5 V’s): “by an
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enormous data volume, exhibiting a wide variety of types, requiring a high velocity of data
processing, a need to deal with the veracity of data uncertainty, and to transform the data
into value” [1].

In Earth observation (EO), the Copernicus Open Access Hub provides complete,
free, and open access to Sentinel-1, Sentinel-2, Sentinel-3, and Sentinel-5P data products.
With the launch of the Copernicus Sentinels and several new national missions [2], the
volume of EO data has dramatically increased, reaching up to hundreds of petabytes
of data [3]: the extraction of the valuable information from these data has become a
significant challenge. In December 2021, 45 million Sentinel products were acquired since
the start of operations: 410 PB volume of downloads has been generated by more than
500,000 users. Recent reports [4] show that the daily average of data generated per day by
the Copernicus programme is 20.2 TB divided as follows: Sentinel-1 data 31%, Sentinel-2
data 47%, Sentinel-3 data 20%, and Sentinel-5P data 2%. The open and free access to
such data opens new opportunities and poses challenges to the storage, processing, and
analysis of such massive data. A state-of-the-art survey of several land cover datasets for
multispectral and synthetic aperture radar (SAR) sensors is provided in [5].

In the medical field, there is a large number of medical datasets available [6] linked to
different diseases [7]. The only restriction is that sometimes the medical data is governed
by the protection of patient data. For example, regarding the neoplastic disease that
is our case of investigation in this paper, the Cancer Imaging Archive [8] is one of the
most extensive and publicly available medical archives funded by the Cancer Imaging
Programme, which is part of the United States National Cancer Institute and managed
by the Frederick National Laboratory for Cancer Research. The dataset contains images
acquired from patients with cancer of different organs (e.g., lung, prostate, liver, breast, and
colon); these images were acquired by sensors/devices (e.g., magnetic resonance imaging,
computed tomography, and digital histopathology). Another freely available dataset is
the one provided by WebPathology [9], which contains high-quality pathology images of
benign and malignant neoplasms and related entities.

In this paper, we explain how information extracted from images (whether Earth
observation or medical) using a data mining system can help users better understand the
content after semantic labelling. Therefore, the first investigation is made with EO images,
for which there is already a validation, and then continues with the investigation on the
medical images.

Here, we present a machine learning system developed for EO images (radar and
then extended for multispectral). For demonstration, several cities were selected, and
depending on the availability of various sensors, we acquired various images (either radar
or multispectral). Finally, after the system has been operated and validated by an expert in
EO, we extend it to medical images.

This article touches on many Big Data notions, such as the large volume of data in
both fields. Furthermore, these data need to be interpreted and understood using machine
learning techniques (e.g., data mining) and semantically labelled. These notions are further
used to show a connection between these semantic classes extracted by different sensors and
the two domains; we use knowledge graphs. Finally, we involve expert users in both fields
to understand and explain these results. In the future, we would like to develop methods
for the explainability and trustworthiness of developed machine learning techniques.

Previous studies linking remote sensing and medicine have primarily focused
on correlating environmental factors with disease incidence or using remote sensing-
derived variables as external inputs to epidemiological models. In contrast, our work
directly transfers semantic labelling and active learning workflows originally developed
for Earth observation image analysis to medical imaging. This enables a unified frame-
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work, where environmental and clinical data can be analysed within the same method-
ological pipeline, facilitating integrative studies at the intersection of public health and
precision medicine.

In the Big Data era, we face enormous data delivered daily by current instruments and
stored in archives. As a result, we need processing systems to extract knowledge from such
extensive archives. This paper is organised as follows: In Section 2, we present the imple-
mentation details of the proposed workflow method, and we describe the characteristics of
each dataset compiled for each set of images. In Section 3, we show the classification results
obtained by applying the proposed method and discusses specific details for each individ-
ual set of images acquired by the different sensors. Further, we detail the information that
can be extracted using such a method from the EO and medical images. In Section 4, we
analyse the findings of the current study starting in light of existing related studies on EO
and medical images. This section ends with perspectives and future work, followed by the
concluding remarks in Section 5.

2. Materials and Methods
2.1. Image Processing Workflow

The system’s workflow for generating semantic classification results is based on
previous work described in [10], in which a satellite image time series was analysed in
terms of temporal changes. However, the methodology now includes efficient exploitation
of EO multi-sensor data and concentrates mainly on urban areas [5,11,12]. The novelty of
the present work is the analysis of medical images using the same methodology.

The overall processing workflow is depicted in Figure 1. The methodology comprises
six steps and is used for handling and analysing EO images and medical images to create
semantic maps, domain ontologies, and knowledge-graph representations. In addition,
this workflow can be used to create the city models based on selected EO images or patient
models under medical follow-up based on collected medical images.

The key elements in image processing are, hence, the application of Gabor filters with
5 scales and 6 orientations to EO image patches, following the configuration established
by [13–15]. For medical images, Weber Local Descriptors with 8 orientations and 18 excita-
tion levels were used [15,16]. These parameters were selected to balance texture sensitivity
and computational feasibility, enabling direct methodological transfer across domains.
Classification was performed using a Support Vector Machine (SVM) with a chi-squared
kernel, one-against-all strategy, and 5-fold cross-validation. Active learning cycles involved
iterative expert feedback, with domain experts labelling positive and negative examples
until semantic convergence was achieved. The model training using SVM with active
learning and relevance feedback, following the workflow described in our previous EO
publications, is summarised in Table 1.

Table 1. Parameters used for model training on EO and medical images with SVM.

Parameter EO Images Medical Images

Kernel type Chi-squared kernel Chi-squared kernel
Multi-class strategy One-against-all One-against-all

Regularisation parameter (C) 1.0 (default) 1.0 (default)
Gamma (kernel coefficient) 1/(number of features) 1/(number of features)
Cross-validation strategy 5-fold cross-validation 5-fold cross-validation

Active learning cycles 3–5 iterations depending on dataset size 3–5 iterations depending on dataset size
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Figure 1. The proposed workflow methodology for semantic classification of EO and medical images.
The following steps to be followed are data acquisition, patch tiling, feature extraction (Gabor filters
for EO, Weber descriptors for medical images), SVM-based active learning with expert feedback, and
generation of semantic maps and knowledge graphs. The details are given in Section 2.1.

These steps are as follows:

• Step 1: During a preparatory phase, the experts select the dates and target areas
acquired by different satellites and download them to typical archives such as the
one from the ESA Copernicus hub [17] or the DLR archives [18]. Each EO acquisition
from the archive has two parts: the image and the metadata. Later, these two parts are
used during operations, as shown in Figure 1. Like EO images, the medical images
are acquired by various devices/sensors operated by experts and stored on servers as
images and metadata associated with each medical image.

• Step 2: Tile each EO image into patches (with no overlapping) and with a pre-selected
size, depending on the actual pixel ground sampling distance to cover the objects on
the ground (see Table 2). The tiling is applied in the same way for the medical images,
with no overlapping between the patches and with a patch size adapted to the content
of the medical image (see Table 3). The size of the patch should be adapted to the
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image resolution and its content, so that the patch includes (as much as possible) a
single object [11,12].

• Step 3: Extract the primitive features that describe the content of each original patch.
For the EO images, one applies Gabor filters with 5 scales and 6 orientations [13–15],
while for the medical images, one applies Weber local descriptors [15] with 8 orien-
tations and 18 excitation levels or multispectral histograms 64 bins. In the case of
Gabor filtering, we extract the Gabor coefficients from each image patch and compute
the means and standard deviations of each set of coefficients (in total, 5 × 6 × 2 = 60
coefficients). In the case of Weber local descriptors, the features are extracted from
each patch in a set of 144 (i.e., 8 × 18) coefficients. A detailed study in the use of
various primitive feature extraction methods and different values of their parameters
can be found in [5,19].

• Step 4: The classification of the primitive features of each original patch is made
automatically, and the patch features are grouped into clusters (i.e., “mathematical
groupings”) using a Support Vector Machine (SVM) [16] with relevant feedback.
The aim is to obtain a feature-based image patch classification by assigning a single
semantic label to each patch using a user-oriented terminology of real-world classes.
For the SVM, a chi-squared kernel is selected, and a one-against-all approach is used.
The activities of the expert users are called “active learning”, referring to the interactive
selection of randomly selected positive and negative examples of target classes based
on a proper visualisation of the individual patches, a visual comparison of the selected
patches (using for comparison the Google Earth maps in the case of EO images and
reference health datasets in the case of medical case), and human expert judgements
about the actual patch content.

• Step 5: Generate a set of patches that are semantically correctly labelled. This step
is finished once all the given patches have been labelled. However, some patches
may remain unlabelled. If the missing labelling represents problem cases, an ex-
pert user must identify the most probable class, or the data can be assigned to an
unclassified class. There is already a hierarchical semantic labelling scheme in the
case of EO images (see [16]). However, regarding the medical images, the experi-
ence of expert physicians is significant for defining the semantic labels allocated to
the classes.

• Step 6: Interpretation of the produced results. The first data product is the semantic
classification results/maps of each image—or, in the case of image time series—the cor-
responding change maps. The second product is domain ontology representations [5],
which help users extract the information and knowledge from the images. Finally,
knowledge graphs can be created to explain the entire chain of relations (starting from
the data, information extraction up to the semantic classes and their relations).
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Table 2. List of selected EO images with their parameters.

Location Instrument Type Mode No. of Sensor Bands/
Selected Bands Resolution Polarisation Patch Size (Pixels) No. of Patches

Be
rl

in
,

G
er

m
an

y Gaofen-3 C-band SAR SpotLight (SL) 1/1 1 m HH 256 × 256 2080

TerraSAR-X X-band SAR Multi-look Ground
range Detected (MGD) 1/1 2.9 m HH 160 × 160 1025

Bu
ch

ar
es

t,
R

om
an

ia

TerraSAR-X X-band SAR Multi-look Ground
range Detected (MGD) 1/1 2.9 m HH 160 × 160 4455

WorldView-2 Multi-spectral - 8/3 (RGB) 1.87 m - 100 × 100 33,930

V
an

co
uv

er
,

C
an

ad
a RADARSAT-2 C-band SAR Extended high (EH) 1/1 13.5 m HH 160 × 160 660

TerraSAR-X X-band SAR Multi-look Ground
range Detected (MGD) 1/1 2.9 m HH 160 × 160 825

A
lb

an
ia

an
d

G
re

ec
e

TerraSAR-X X-band SAR
Multi-look Ground

range Detected (MGD) 1/1 2.9 m HH 160 × 160 1872

Sentinel-1 C-band SAR Interferometric Wide
swath (IW) 1/1 20 m VV/VH 128 × 128 26,260

Sentinel-2 Multi-spectral - 13/3 (RGB) 10/20/60 m - 120 × 120 8281
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Table 3. List of selected medical images with their parameters.

Data Instrument No. of Bands/
Selected Bands

Image Dimension
(Pixels)

Sub-Images
(Pixels)

Patch Size
(Pixels)

No. of
Patches

Colorectal
adenocarcinoma Optical microscopy 3/3 1024 × 768 - 4 × 4 49,152

Lung
adenocarcinoma Optical microscopy 3/3 avg. 9688 × 9832 890 × 801 4 × 4 44,400

Non-small cell
lung cancer

Computer tomography
(CT) scan 1/1 avg. 1802 × 884 1372 × 672 4 × 4 57,624

To summarise the process from Figure 1, we can say the following: the proposed
methodology has two branches: one for Earth observation images and one for non-EO
images. In detail, our approach consists of the following steps: acquire new data from
one of the available EO satellites and store the EO image products in an archive, tile each
image into patches with different sizes and integrate the appropriate metadata parameters,
extract the primitive features from each patch (in this case, we used Gabor filters with
5 scales and 6 orientations), group them into classes using an active learning approach
by applying a Support Vector Machine with relevance feedback, and provide a semantic
label for each patch. Here, a list of already defined semantic labels exists, and the user can
select an existing one or define a new one. Once EO experts have completed this process,
users can create semantic classification maps of the given images. Like EO imagery, the
procedure for medical images starts by acquiring images from various instruments such as
optical microscopy images in classical haematoxylin-eosin (HE) and computed tomography
(CT) images and storing them on a server. The following steps are similar; however, the
size of the patches depends on the medical image parameters. Finally, the Weber local
descriptors generate the extracted primitive features. Here, compared to the EO domain,
the knowledge of field experts is very important in defining the semantic classes because
there are no already predefined labels. After the images have been classified, the next step
is to create semantic maps of the medical images.

2.2. Dataset Description

This subsection is dedicated to selecting and describing the images used in this paper.
The images are divided into two main categories, namely EO images and medical images.
In the case of EO images, we considered the availability of the selected images, the diversity
of locations, and the available sensors (radar or multispectral instruments). In addition,
we considered the following types of images collected from haematoxylin-eosin (HE)
pathological slides and computed tomography (CT) scans in terms of medical images.

The data provided by each EO sensor are the images (in GeoTIFF or JPEG2000 format)
and their metadata (in XML format). These metadata contain information about the
acquisition parameters of the respective image (e.g., time of acquisition, incidence angle,
resolution).

Similar to EO images, medical images are also accompanied by additional information
such as clinical and demographic data (e.g., sex, weight, height, body mass index, area
of residence) and relevant information from medical history, including current chronic
diseases, treatments, and risk factors (usually in TXT or CSV format, separate from the
map data).

2.2.1. Earth Observation Datasets

From the large amount of EO data provided by different instruments [2,20], we selected
six instruments that flew over the following cities: Berlin, Bucharest, Vancouver, and some
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cities areas between Albania and Greece, such as Corfu. We grouped the instruments
into multispectral and SAR imagers. The data were received/provided via proposals,
project agreements, or downloaded from the sensor imagery samples, and are sometimes
subject to copyright rules, which we adhered to. From the wide variety of available and
existing instruments, we selected the following ones (in alphabetical order): Gaofen-3 [21],
RADARSAT-2 [22], Sentinel-1 [23], Sentinel-2 [24], TerraSAR-X [25], and WorldView-2 [26].
Table 2 shows the most important parameters of each selected instrument. More examples
can be found in [27,28]. The dimensions of the EO images range from 5000 × 5000 pixels
for TerraSAR-X, to 10,000 × 10,000 pixels for Sentinel-2, and even up to 25,000 × 16,000
pixels for Sentinel-1.

2.2.2. Medical Datasets

Medical images from various clinical and biomedical research fields are widely avail-
able online. For instance, an extensive collection of radiological medical images created
for the validation of AI methods can be found in [29]. Unfortunately, these images are
subjected to sensitive personal data protection issues, so many clinical and demographic
data and clinical history were unavailable [29]. The first two sets of images were acquired
by optical microscopy, while the third set of images was acquired by computer tomography
(CT) scan. The number of selected images for demonstration depends on the diversity of
medical cases identified in each set of images. Table 3 shows the essential parameters of
each selected dataset. All medical images used in this study were fully anonymized prior
to analysis. Public datasets (WebPathology and TCIA) were used under their respective
open-access policies. A small number of additional de-identified pathology images were
collected retrospectively under institutional IRB approval no. 1575/02.02.2024. No pa-
tient identifiers were accessible to the research team, and no additional informed consent
was required.

(1) The first dataset of images is from 8 patients with colorectal adenocarcinoma; the
total collected images at different magnifications (5×, 10×, 20×) are 180. They were
collected using an optical microscopic device equipped with an RGB camera, be-
ing selected by a medical expert based on their expertise to include typical normal
structures of the colon wall and pathological structures commonly found in colon
adenocarcinoma. Usually, the prototypic colorectal cancer is a well-to-moderately
differentiated adenocarcinoma consisting of tubular, anastomosing, and branching
glands in a desmoplastic stroma. The surface component may be ulcerated or show
papillary or villous architecture. In addition, residual adenoma is often present at the
edge of the tumour [30,31].

(2) The second dataset of images is from the patients with lung tumours; there are
11,210 CT images and 25 pathology slices collected from 6 patients. From these, we
selected 10 images from 2 patients with lung adenocarcinoma. Usually, lung adenocar-
cinomas show an admixture of many architectural patterns such as acinar, papillary,
micropapillary, lepidic, and solid growth patterns [32,33].

(3) The third dataset of images is extracted from a collection of 52,072 images from
422 patients with non-small cell lung cancer (NSCLC) [34]. For these patients, pre-
treatment CT scans lung tumours; manual delineation by a radiation oncologist of the
3D volume of the gross tumour volume and clinical outcome data are available in [31]
for the Lung1 dataset. Typically, lung cancer pathology can identify two groups of
cancer cells: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC).
Then, the last ones, the NSCLC, are divided again into squamous cell cancer (SCC),
large cell cancer, and lung adenocarcinoma. Finally, in situ (ISA) and invasive are the
two types of lung adenocarcinoma.
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3. Results
This paper is based on an “intelligent system”, which starts from the data and reaches

its knowledge [35]. The system has two stages: (1) the first stage is to transform the data (in
our case, the images) into actual information. The data is in the form of images, where after
several processing steps (see Figure 1), each patch being tiled from the image comprises
an associated feature vector and its corresponding metadata (e.g., geographical position,
acquisition data, and instrument type). The image is now converted into information. Then,
in the second stage, the contoured image is transformed into knowledge about that image.
Such transformation is triggered by the user who, with the help of his knowledge, classifies
and groups the features of each patch into classes (categories) and then gives them meaning
by defining semantics. One obtains, thus, a semantic catalogue for each domain [36]. This
type of system is mono-directional, in which the information flows from the machine to
the human. When all the results are stored in a database, each patch is associated with
metadata, features, semantic labels, and user ID. All this information/knowledge can
be used to make various queries in the database (in the opposite direction), or different
knowledge representation models can be defined.

3.1. Semantic Classification Based on the Extracted Information
3.1.1. Earth Observation Images

This sub-section explains the classification results obtained for each target area, consid-
ering that various instruments have acquired the data. The results show that the number of
obtained classes depends on the instrument type, resolution, and patch size. For EO data,
we used for comparison the same type of features, namely, the results of Gabor filtering,
where we extracted 60 coefficients (see Step 3 in Section 2). A detailed analysis of the impact
of a selected patch and its resolution on the number of attainable classes has already been
published in [34,35].

For a set of characteristic EO images, we selected from the available data four
cities/areas, for which we could obtain simultaneous acquisitions of several instruments
(SAR and multispectral). The investigation could be grouped into three categories:
(1) instruments flew over the same city or a subarea of the city (e.g., Bucharest, Romania);
(2) the acquired images mainly cover the same area of the city (e.g., Berlin, Germany) or
different subareas of the city (e.g., Vancouver, Canada); (3) the acquired images cover the
city together with its surrounding areas, up to the coverage of a neighbouring island (e.g.,
Corfu, Greece).

Bucharest [37] is analysed through the acquisitions made by TerraSAR-X and
WorldView-2. After applying the method described in the Materials and Methods section,
the semantic classification results show that the number of identified classes in the two
images is the same (see Figure 2). However, in the case of multispectral data, the clas-
sification accuracy is higher [38]. The higher accuracy is due to (a) the better resolution
of the WorldView-2 instrument (1.87 m instead of 2.9 m) and (b) the smaller patch size
(100 × 100 pixels instead of 160 × 160 pixels). The smaller patch size shrinks the size of the
classified object, thus avoiding a mix-up with other objects.
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Figure 2. Semantic classification results for the city of Bucharest, Romania, using TerraSAR-X (top)
and WorldView-2 [26] (bottom). The images were acquired on 15 August 2009 and 13 December 2012,
respectively.

For Berlin (see Figure 3), the overlapping of the two images is partial, but parts of the
city centre (e.g., Tiergarten Park and the Brandenburg Gate) are common. For comparison,
we analysed two images acquired by similar types of SAR instruments. When we compare
the classification results obtained by GF-3 and TerraSAR-X, we notice that even if GF-3 has
a better resolution, the number of attainable surface cover classes is higher for TerraSAR-X
due to the actual content of the image. The TerraSAR-X image also covers the northern part
of the city, richer in content, and new categories appear, such as bridges, channels, etc.
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Figure 3. A dataset of the city of Berlin, Germany (acquired by GF-3 [21] and TerraSAR-X [25]). (Top
part, from left to right): A quick-look view of a GF-3 image acquired on 27 July 2018 and its semantic
classification results. (Bottom part, from left to right): A quick-look view of a TerraSAR-X image
acquired on 19 September 2008 and its semantic classification results.

For Vancouver (see Figure 4), we used images of two SAR instruments (TerraSAR-X
and RADARSAT-2) covering separate parts of the city with different resolutions. The
images show that there are situations in which the instruments cannot cover the same area
of a city but only parts of it. However, this approach is helpful for repeated coverage of a
city and its classification.
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Figure 4. A dataset of the city of Vancouver, Canada (acquired by TerraSAR-X [25] and RADARSAT-
2 [22]). (Top part, from left to right): A quick-look view of a TerraSAR-X image acquired on 20 April
2008, and its semantic classification results. (Bottom part, from left to right): A quick-look view of a
RADARSAT-2 image acquired on 4 April 2008 and its semantic classification results.

The images in Figure 5 were acquired by three different instruments (two SAR in-
struments and one multispectral instrument). These images were selected to obtain a
reduced time interval between their acquisitions because a simultaneous acquisition was
not possible due to the satellite revisiting times and—in the case of the multispectral
instrument—due to cloud coverage of the investigated area.
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Figure 5. A dataset covering Albania and Greece (acquired by TerraSAR-X [39], Sentinel-1 [40], and
Sentinel-2 [41]). (Top part, from left to right): A quick-look view of a TerraSAR-X image acquired on
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11 January 2017 and its semantic classification results. (Centre part, from left to right): A quick-look
view of a Sentinel-1 image acquired on 15 January 2017 and its semantic classification results. (Bottom
part, from left to right): An RGB quick-look view of a Sentinel-2 image acquired on 15 October 2016
and its semantic classification results.

When we analyse the results of the semantic classifications, we can observe the follow-
ing: (a) comparing Sentinel-2 with Sentinel-1 (with resolutions of 10 m versus 20 m) reveals
that the vegetation classes can be distinguished much better due to the high resolution of
the images and the additional multispectral bands (Sentinel-2); (b) comparing TerraSAR-X
with Sentinel-1 (resolutions of 3 m versus 20 m) shows a more refined set of semantic
classes found by the former instrument. Here, the patch contains more than 80% of the
most prominent semantic class, compared to the Sentinel-1 case, where we have a more
mixed content in the patch.

Selecting a specific class of interest, such as aquaculture (i.e., fish cages in coastal
seas), shows that identifying this category depends on the instrument’s resolution. This
aquaculture class can be seen from three semantically classified images acquired with a
resolution of up to 10 m (e.g., TerraSAR-X, Sentinel-2).

3.1.2. Medical Images

After the method has been successfully validated for EO images, now in this sub-
section, we validate the method/system for several medical images acquired from humans
with various sensors (as single-band or multi-band). Each image is explained based on the
semantic classification results. We choose the most representative images per case for a
demonstration from each set of medical images. Similar results are obtained for the other
images from the datasets.

For medical data, we used for the comparison of each dataset the same type of features
(see Step 3 in Materials and Methods). Based on the knowledge gained in the analysis of EO
images, in the case of medical images, we tried different patch size (see Step 2 in Materials
and Methods) for each set of medical images in order to better capture their contents and to
describe the semantic classes as precisely as possible. Comparative results obtained using
different patch sizes are presented in the following figures for each set of medical images.
However, in the future, a more detailed study in this direction is necessary to identify the
optimal patch size for each individual case.

To compare the results obtained with the method presented in Materials and Methods,
we use an unsupervised method based on Latent Dirichlet Allocation [42], developed
for topic representation of EO images during the H2020 ExtremeEarth project. Here, the
method is applied to the medical images (with a patch size of 4 × 4 pixels) selected from
the three datasets in order to compare the results with the one from Materials and Methods.

The first medical dataset analysed is that of the colorectal adenocarcinoma, acquired
using optical microscopy. From the dataset, we chose the most representative images. For
this set of images, the patch size is reduced by adapting the patch size to the resolution
of the image and the content of the image. We compared the classification results using
four different patch sizes, 48 × 48 pixels (with a total number of patches equal to 336),
24 × 24 pixels (with a total number of patches equal to 1344), and 16 × 16 pixels (with a
total number of patches equal to 3072). The results of these different patch sizes (for the
image with the ID KS-172) are presented in Figures 6 and 7. For comparison, the previous
results are compared with the LDA method with the patch size of 4 × 4 pixels (with a total
number of patches equal to 49,152).
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Figure 6. Colorectal adenocarcinoma image (ID KS-172), magnification ×10 and the semantic classifi-
cation results using two different patch sizes: 48 × 48 (top right) and 24 × 24 (bottom right).
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Figure 7. (Left part) An RGB image (ID KS-172), magnification ×10 selected from the third dataset
that correspond to colorectal adenocarcinoma. (Right part) The semantic classification results using a
patch size of 16 × 16 pixels.

With a larger size of the patch, a larger area of the image is incorporated; therefore,
more objects can be included in it (see Figures 6 and 7), which is not desired for a better
classification. By reducing the size of the patch (see Figure 8), we can obtain a better
classification; therefore, the patch includes only one class.

 
Figure 8. (Left part) An RGB image (ID KS-172), total magnification ×100 selected from the third
dataset that corresponds to colorectal adenocarcinoma. (Right part) The unsupervised classification
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results using a patch size of 4 × 4 pixels. The colours (right part) have been assigned without human
supervision eight classes which, however, do not correspond to cellular or tissular structure. The
colours band is added to allow counting the number of classes which have been found through
unsupervised classification.

In Figures 6 and 7 (top part), class 5 around class 1 is the adventitia tunic around a
blood vessel.

Regarding Figures 6–8 (bottom part), when class 1 is inside the blood vessel, it is the lu-
men (an empty space); when it is in the submucosa, it represents the loose connective tissue.
For class 2, when it is around the blood vessels, it represents their wall (tunica adventitia,
muscular, intima), and when it is outside the crypto areas, it is the connective tissue.

Based on the results obtained in Figures 6–8 and the expert observations, it can be
seen that for a more detailed/finer classification, a smaller patch is required in order to
retrieve the small areas/cells.

Further, the other selected images for evaluation (KS-031, KS-032, KS-040, KS-042,
KS-145, KS-165, and KS-168) were classified. The results were similar with the one from
Figure 7 (bottom part) and are not presented here due to space limitations.

Analysing the results from the above figures (Figures 6–8), we can see that the proposed
method works very well when the size of the patch is smaller. In the unsupervised case,
the results are not as good (see Figure 8). What is very important in the case of medical
images, due to the complexity of the image content, is that an expert (e.g., a doctor) and his
knowledge in the field are needed in order to classify the image and group the patches into
the classes, and further to provide the semantic meaning to the retrieved classes.

In the histopathology image of Figure 6 (top left), there are three structurally distinct
areas: the structurally normal glandular zone, adipose tissue with blood vessels surrounded
by connective tissue, where disturbances in organisation are identified (Figure 6, top right).
In the case of the blood vessels, a distinction was made between the vascular walls and
the interior of the vessel, with a clear differentiation within the latter between the area
occupied by blood cells (predominantly erythrocytes) and the empty intraluminal space.
There is an error zone, where classes related to a quasi-homogeneous pinkish area rep-
resenting a fibrinogen accumulation zone are mixed. Small-sized areas are incorrectly
identified as glandular tissue in perivascular regions and as vascular wall areas in the
dominant glandular region. Due to their small size, it is difficult to achieve continuity
of the vascular wall. Dividing the same image into 24 × 24 patches led to some errors
(Figure 6, bottom right). The vascular wall was incorrectly identified as connective tis-
sue, and the vascular lumen as adipose tissue. Additionally, there were a few patches
where connective tissue was misidentified as glandular tissue. Reducing the patch size
to 16 × 16 (Figure 7) allowed for the identification of vascular structures but still did
not distinguish between the vascular wall and the blood-filled lumen. Moreover, the
periglandular areas identified as vascular structures expanded. A positive aspect is the
ability to differentiate between loose and dense connective tissue. However, distinguishing
between adipose tissues and empty intraluminal spaces remains impossible. Unsuper-
vised learning identifies a larger number of classes (Figure 8), but there are significant
limitations regarding the distinction of areas with different histological characteristics.
Confusions arise between areas of connective tissue and vascular wall areas, even inside
the intraluminal blood clot, between the glandular lumen and areas of connective tissue,
and so on.

Figure 9 displays images selected from the entire dataset from which we are taking
the sub-images for our investigation. These areas are marked with a green rectangle and
annotated from 1 to 19. The index of each sub-image is marked in the lower left corner of
the green rectangle.



Mach. Learn. Knowl. Extr. 2025, 7, 140 18 of 43

 

Figure 9. (Top to bottom) and (left to right) Four RGB images (LungFCP-01-0001_b1, LungFCP-01-
0002_b1, LungFCP-01-0001_b3, and LungFCP-01-0001_b4), total magnification ×20 selected from the
second dataset that correspond to different lung adenocarcinoma. The numbered green squares are
the sampling or the sub-images zones used to run our model.

We compared the classification results using four different patch sizes, 48 × 48 pixels
(with a total number of patches equal to 288), 32 × 32 pixels (with a total number of patches
equal to 675), 16 × 16 pixels (with a total number of patches equal to 2750), and 8 × 8 pixels
(with a total number of patches equal to 11,100). The results of this comparison is performed
for a sub-image with the id 15 (see Figures 10 and 11), and we can say that the best results,
in terms of the number of retrieved classes and visual comparison (given by an specialist
doctor) between the original image and classified one, are those obtained for the case when
the patch was 8 × 8 pixels.



Mach. Learn. Knowl. Extr. 2025, 7, 140 19 of 43

Figure 10. (Top part, left) An RGB image selected from the sub-image 15 (total magnification ×40) in
Figure 9 that correspond to lung adenocarcinoma. (Top part, right) The semantic classification results
using a patch size of 48 × 48 pixels. (Bottom part, right) The semantic classification results using a
patch size of 32 × 32 pixels.
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Figure 11. (Top part, left) An RGB image selected from the sub-images 15 in Figure 9 that correspond
to lung adenocarcinoma. (Top part, right), total magnification ×40 The semantic classification results
using a patch size of 16 × 16 pixels. (Bottom part, right) The semantic classification results using a
patch size of 8 × 8 pixels.



Mach. Learn. Knowl. Extr. 2025, 7, 140 21 of 43

For the same sub-image id 15, the method in [42] is applied with different number of
classes/topics (e.g., 6, 10, and 12) with a patch size of 4 × 4 pixels (with a total number of
patches equal to 44,400). The results are presented in Figure 12.

 

Figure 12. (Top part, left) An RGB image selected from the sub-images with the ID 15 (see Figure 9),
total magnification ×40 (objective ×4) that correspond to lung adenocarcinoma. The unsupervised
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classification results are obtained using a patch size of 4 × 4 pixels. (Top part, right) Presents the
results with 6 classes/topics. (Centre part, right) Presents the results with 11 classes/topics. (Bottom
part, right) Presents the results with 12 classes/topics. The colours on the colours bands under the
images in the right part have been assigned without human supervision to six (top), eleven (middle)
and twelve (bottom) classes which, however, do not correspond to cellular or tissular structure. The
colours bands are added to allow counting the number of classes which have been found through
unsupervised classification.

Similar results are obtained for the other representative sub-images selected from
Figure 9 and marked from 1 to 19. Figure 10 (top left) shows the image of a lung parenchyma
with inflammatory infiltrate, in which a blood vessel and a few airways are being destroyed.
The analysis of the image, starting from patches of 48 × 48 pixels, relatively correctly distin-
guishes these areas, with a few errors related to some areas of the lung parenchyma richer
in connective tissue, which are mistakenly identified as vascular walls. It is noteworthy that
a distinction can be made between the empty intraparenchymal areas that may correspond
to airways (bronchi of various orders). Figure 10 (bottom, left) represents the result of the
analysis of images with smaller dimensions (32 × 32 pixels).

It is notable that there is a clear distinction mentioned above between the empty
intraparenchymal space and the empty space at the edge of the area occupied by the tissue
sample on the slide. The only notable error remains the identification of some areas of
connective parenchymal tissue as being vascular walls. Figure 11 (above, left) represents
the result of the analysis using patches of size 16 × 16 pixels. The error related to the
incorrect identification of areas of connective parenchymal tissue as vascular wall persists
even in the wrongly identified areas, as can be seen in Figure 11 (top, left).

Figure 11 (bottom, left) represents the processing of the image using patches of
8 × 8 pixels. The details are more numerous, and the errors are smaller. Various types of
classes could be identified, including areas of connective intraparenchymal tissue. The
areas where there are errors related to the identification of intraparenchymal connective
tissue as the vascular wall are small in size. The results of unsupervised learning become
increasingly inefficient as the size of the patch used is smaller and the number of classes is
larger, as shown in the images from Figure 12 (right).

The third medical dataset analysed is that of lung adenocarcinoma, which was acquired
using CT. The patients, whose CT images are available in the third dataset and analysed
here, are the same as the patients in the second dataset. From this dataset, we chose the
most representative images, which contain different anomalies (suspicious or cancerous
areas) and need to be analysed.

The following figures show images selected from the entire dataset and used in our
investigation. We compared the classification results using four different patch sizes,
48 × 48 pixels (with a total number of patches equal to 140), 32 × 32 pixels (with a total
number of patches equal to 315), 24 × 24 pixels (with a total number of patches equal to
609), and 16 × 16 pixels (with a total number of patches equal to 1333). The results of this
comparison are given in Figures 13 and 14, and we can say that, in the case of CT images,
the best results are for the classification with a patch of 16 × 16 pixels, which not only has
the highest number of classes retrieved by the method but also benefits from the expertise
of the user (in this case, the specialist doctor).
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Figure 13. Computed tomography (CT) of a human lung from a patient diagnosed with cancer. (Top
part, left) A grey image selected from the dataset that corresponds to lung cancer. (Top part, right)
The semantic classification results using a patch size of 48 × 48 pixels. (Bottom part, right) The
semantic classification results using a patch size of 32 × 32 pixels.
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Figure 14. Computed tomography (CT) of a human lung from a patient diagnosed with cancer. (Top
part, left) A grey image selected from the dataset that corresponds to lung cancer. (Top part, right)
The semantic classification results using a patch size of 24 × 24 pixels. (Bottom part, right) The
semantic classification results using a patch size of 16 × 16 pixels.
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Based on this result, Figure 12 shows the analysis of two other CT images: one collected
from a patient with no diseases and one from a patient with a cancerous tumour. For the
same set of CT images selected from the dataset, the unsupervised method [42] is applied
(number of classes/topics is equal to 12) with a patch size of 4 × 4 pixels (with a total
number of patches equal to 30,800). The results are presented in Figure 13. The training
of the algorithm on computed tomography images allows the introduction of multiple
classes representing anatomical structures and regions of the thorax with relatively few
errors (Figure 13, top left). Figure 13 (top right) shows a CT image of the transverse
section of the thorax at the level of T5, where the right lung is identified and a large-sized
tumour is in the middle. For proper preparation, these tumours can be delimited without
errors of misidentifying other structures or tumour tissue. Keeping the same number of
classes (of anatomical structures) but reducing the size of the patches results in improved
delineation of these areas (Figures 13 and 14, bottom left). Reducing the patch size to
24 × 24 and 16 × 16 allows for refinement in the definitions of selecting anatomical regions
in the thorax (Figure 14). Patches with a size of 16 pixels are optimal for delineating
structures and anatomical regions in sections where the tumour is absent (Figure 15, top) or
present (Figure 15, bottom). Also, it is noted that errors in identifying structures are greatly
reduced, regardless of the sizes of the patches used in the analysis. Unsupervised learning
using 4-pixel patches is not effective, neither in cases where the tumour is absent nor in
those where it is present (Figure 16), even though the number of classes is the same as in
supervised learning.

3.2. Knowledge Representation

Daily, through the Copernicus Programme, a huge amount of data (e.g., 12 TB of
satellite images/day) is acquired, much of which remain unexplored in archives. This is a
typical case where methods/algorithms are needed to explore these archives and extract
useful information. One of the methods that can be applied for this purpose is the one
based on active learning, with human interaction from a user who can guide the search
and the semantic annotation in the desired direction by extracting information necessary
for a given application [5].

In this section, we use the output of the proposed method (the semantic classes) in
order to efficiently exploit the information/knowledge from the semantic labels and to
analyse the relation between the different labels in a model of each observed target area.
Based on the collected information, Figures 17–19 show built models that include the
semantic classes, which can lead to the creation of the model of the city that considers
two major aspects: How green is the city? and How industrialised/populated is the city?
Figures 17–19 show three examples for the following cities: Bucharest (Figure 17), Berlin
(Figure 18), and Vancouver (Figure 19).
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Figure 15. CT image of a healthy lung (top) and CT image of a lung with cancer (bottom), along with
their corresponding semantic classification using patches of 16 × 16 pixels.
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Figure 16. Computed tomography (CT) of a human lung from a healthy patient and patients
diagnosed with different diseases (e.g., cancer). (Top part, left) There are three grey images selected
from the dataset that were acquired by CT scan. The unsupervised classification results are obtained
using a patch size of 4 × 4 pixels with 12 classes/topics. (Top part, right) Presents the results of
a control image that does not contain any abnormalities or diseases. (Centre part, right) Presents
the results of an image of a patient who developed a cancerous tumour in the lung. (Bottom part,
right) Presents the results of an image of the same patient who developed a cancerous tumour in a
different part of the lung. The colours on the colours bands under the images in the right part have
been assigned without human supervision twelve classes which, however, do not correspond to any
tissular or organ structure. The colours bands are added to allow counting the number of classes
which have been found through unsupervised classification.
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Figure 17. A model of the city of Bucharest, Romania: (left side) a comparison of the semantic classes
generated by each instrument and (right side) a comparison of the classes that define a green city
(broadleaf forest, grassland, rivers, sports grounds) and the classes that describe the infrastructure
of the city (admin. compounds and monument areas, bridges, cemeteries, high-density residential
areas, medium-density residential areas, mixed urban areas, parking areas, roads).

  

Figure 18. A model of the city of Berlin, Germany: (left side) a comparison of the semantic classes
generated by each instrument and (right side) a comparison of the classes that define the concept
green city and the classes that define the infrastructure of the city.

  

Figure 19. A model of the city of Vancouver, Canada: (left side) a comparison of the semantic classes
generated by each instrument and (right side) a comparison of the classes that define a green city
and the classes that form the infrastructure of the city.
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Similar to the creation of the city model, a model of the patient or patients from the
same city/region can be created. The next figure (Figure 20) shows such a model of two
patients with cancer from the same city.

 

Figure 20. Knowledge graph linking the semantic classes of two patients with lung tumours.

4. Discussion
4.1. Machine Learning Systems and Semantic Labelling

Annotation systems have been proposed for multimedia data for the first time. An
example is the online LabelMe tool [43] for annotating pictures. Several research groups
created systems for image understanding and annotation [44], including web engines in
remote sensing. In the EO domain, most of the well-known systems are based on machine
learning techniques (e.g., content-based information retrieval [45], data mining [46], deep
neural networks [47], and a hybrid semi-supervised technique [48]. We would like to
mention here: LandEX [49], GeoIRIS [45], EOLib [50], and CANDELA [27].

In recent years, with the advancement of artificial intelligence, especially machine
learning techniques [51], these techniques have become more visible in the medical field [52],
with the main direct goal of better diagnosis and diagnostic error elimination [53]. Based
on our knowledge, in the medical field, most of the existing systems use segmentation tech-
niques to separate different objects/classes in an image or use a content-based information
retrieval approach to identify similar images. However, a system like the one we proposed
for medicine based on an active learning approach (using a data mining technique) is not
yet available.

The present study was designed as a proof of concept to explore the transferabil-
ity of semantic labelling and active learning techniques from the field of Earth obser-
vation to medical imaging. Unlike deep learning-based approaches that dominate cur-
rent medical image analysis, our system emphasises interpretability and integration with
environmental datasets via knowledge graphs. While our results demonstrate feasibil-
ity, we do not claim superiority over mainstream methods. A comprehensive bench-
marking study comparing our approach with state-of-the-art deep learning algorithms
will be an important next step once larger and clinically curated datasets become avail-
able. Our approaches are systematic in terms of medical cases but are exhaustive in
terms of testing the capabilities of the methodology. We found that this method is
quite efficient at the histological level and remarkably efficient for delineating organs,
structures, and anatomical regions based on CT images. This CT image analysis capa-
bility allows the methodology to be combined with radiomics, as we will show a bit
further on.

There are already predefined semantic annotation schemes for labelling the EO data in
remote sensing (including radar and multispectral images). One of them is presented in [5]
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and is further applied in this paper. From about 300 radar images, 354,000 patches were
generated, to which 53 semantic labels have been assigned, using a data mining system
and the knowledge of an expert user in the field. To this number of labels can be added
the cases where two or more semantic classes are assigned to a patch in a multi-labelling
approach (e.g., channels and high-density residential areas), plus the class Unclassified,
which is assigned to the patches for which no suitable label was found.

The number of semantic classes identified in an EO image varies between 10 and
20 classes; this depends on the image’s location and content. From our experience [1,28,54],
a more significant number of semantic classes are being identified in metropolitan areas.

In contrast, the number of semantic classes in the medical field is smaller but with
much more complex image content. In this case, in the definition of semantic classes, the
knowledge provided by an expert in oncological diagnostics is critical.

Graph-based representations of data, their interrelationships, and their linking with
higher-level knowledge have already been proposed by several authors [55–57]. Typical
applications are graph data for graph visualisation, graph matching, graph patterns and
substructures, pattern and grammar learning, decision trees, and graph mining.

An essential step in using graphs for image content interpretation was the introduction
of knowledge graphs by Google [58]. We can assume that the big commercial search engines
(such as Bing and Wikipedia) rely on knowledge graphs in their search routines when they
combine higher-level knowledge expressed as ontologies with digital information such
as images.

4.2. Knowledge Graphs and Interpretability

The scientific goal of knowledge graphs [59] is to select image data combined with
additional information and generate higher-level interpretation results from them. There
are already several available knowledge graphs, among which we would like to mention
Google Knowledge Graph, Wikidata, DBpedia, and YAGO [60]. A survey on knowledge
graphs has been published by [61], while a detailed scientific paper dealing with knowledge
graphs for remote sensing images has been published by [62]. A study paper for health
knowledge graphs built from medical records has been presented in [63].

Although machine learning methods have reached a high level of maturity in many
fields (e.g., computer vision, remote sensing), there is still a need for the explainability and
trustworthiness of developed methods. Recently, in this domain, there have been some
efforts to create explainable machine learning (XML) models, which are part of the larger
domain of explainable artificial intelligence [64–66]. The three concepts that govern XML
are interpretability, transparency, and explainability.

A first step in expanding the knowledge from EO to medicine was taken within a
previous research TELEIOS project [67], where a data mining “laboratory” system was
tested successfully with other types of images rather than the EO images for which it was
developed. The image was a microscopic tissue of the stomach collected from a herbivorous
animal. The RGB image had the size of 3136 × 2352 pixels that was tiled into 1131 patches
with the size of 80 × 80 pixels. Based on this system, six semantic classes were extracted.

4.3. From AI for EO to AI for Health: The Case of Lung and Colorectal Cancers

Such an approach that is proposed in this paper for the medical field is an unexplored
opportunity as it emerged when we compared the number of publications in remote sensing
with those in medicine. This study was conducted on the IEEE Xplore website, an extensive
database of articles with a remarkable impact, by querying based on keywords related
to the two fields. The search was performed for keywords such as “machine learning”
and “remote sensing” or “medical images” (see Figure 21a). Another comparison was
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made between “machine learning” and “Earth observation” or “Computed tomography”
(see Figure 21b). Finally, from the available machine learning techniques, our proposed
and selected method is the “active learning” method that was compared in the number of
existing publications on “Earth observation” and “Computed tomography” (see Figure 21c).
The main observation of this study is that the research in the field of Earth observation is
much more developed than in the medical field (in several available publications). This
conclusion is an additional reason that motivates us to find solutions applicable to the
medical field.

Figure 21. (a) The first comparison is “Machine learning” and “Remote sensing imaging” versus
“Machine learning” and “Medical imaging”. (b) The second comparison is “Machine learning”
and “EO images” versus “Machine learning” and “CT images”. (c) The last comparison is “Active
learning” and “EO” versus “Active learning” and “CT”.

A state-of-the art in the field of AI4EO (artificial intelligence for Earth observation) is
already mentioned in many papers published in recent years in the field of remote sensing;
for this reason, in this paper, we will not insist in this topic, but we will mention a series of
articles on this topic [68–70].

AI and deep learning have been applied in computer-aided diagnosis and research,
allowing for advanced analysis and learning through simulations of the human brain [71].
The applications of AI in lung cancer are diverse and include tasks such as segmentation,
detection, cell counting, and gene mutation prediction, demonstrating their potential in
improving various aspects of lung cancer diagnosis and treatment [72].

In the context of lung diseases, there is a high global burden that encompasses a
spectrum of diseases, including cancer, tuberculosis, idiopathic pulmonary fibrosis, and
COVID-19 [73]. Among these, lung cancer stands out as a major cause of cancer-related
death [74]. Furthermore, AI has shown promise in the quantification of imaging biomark-
ers, which are essential for the diagnosis, risk stratification, and assessment of treatment
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responses in lung cancer patients [73], while other emerging applications include areas
like multimodal data analysis, 3D pathology, and transplant rejection prediction [73].
In thoracic imaging, AI has played a pivotal role, with deep learning techniques driving
significant progress [75]. Deep learning (DL) algorithms have been developed for various
lung cancer-related tasks, underlining their importance in the domain [76]. These algo-
rithms have had a profound impact on medical image analysis, especially in the context
of lung imaging [77]. However, it is important to be aware of possible bias in supervised
deep learning algorithms used for CT lung nodule detection and classification, highlight-
ing the need for ongoing research and refinement in this field [78]. The potential of DL
in lung cancer extends from screening to prognostication, showcasing its versatility and
significance [76].

On the other hand, colorectal diseases, with a particular focus on colorectal cancer
(CRC), are a significant health concern with high incidence, morbidity, and mortality rates,
as highlighted in several studies [74,79–81]. AI plays an expansive role in the diagnosis,
treatment, and prognosis of CRC being applied in various fields, including imaging, en-
doscopy, and pathology [82]. CRC is the second most common cancer in women and the
third most common in men [83]. This prevalence is accompanied by increasing incidence
rates, which present growing diagnostic challenges in the field of colorectal cancer [83].
Various diagnostic methods—including excreta and blood tests, colonoscopy biopsy sam-
ples [84], computer-aided endoscopy, and medical imaging—are employed in the diagnosis
of colorectal cancer [74], since early and accurate diagnosis is of paramount importance
in improving survival rates, increasing cure rates, reducing mortality, and minimising
medical costs associated with the disease. Thus, in the context of treatment decisions for
colorectal cancer, the preoperative assessments of a large variety of biological variables [81]
hold significant importance as they guide personalised treatment strategies for individuals
with colorectal cancer [79]. Neoadjuvant chemoradiotherapy is the standard treatment for
Locally Advanced Rectal Cancer (LARC) [85], while early evaluation of colorectal cancer
liver metastasis (CRCLM) is crucial for determining treatment strategies and improving
survival outcomes in patients who are beyond the locally advanced disease [86]. While CT
is also utilised in the detection of distant metastases [81], MRI serves as a crucial diagnostic
tool, offering accurate evaluation of tumour location, local staging, restaging, invasion
depth assessment, localization of radiotherapy, prediction of chemotherapy response, de-
tection of high-risk factors, and prognosis assessment [81,87]. To evaluate the diagnostic
accuracy of AI in detecting lymph node metastasis in CRC, systematic reviews have been
conducted with a focus on radiomics and deep learning in CT/MRI studies [88]. The
results indicate that while radiomics exhibits high heterogeneity, deep learning, although
less prevalent, proves to be effective. In particular, AI models, with a special emphasis on
deep learning, demonstrate the potential for accurate prediction of lymph node metastasis
in CRC [88]. Additionally, DL techniques have emerged as valuable tools in histopathol-
ogy, offering diagnosis assistance in CRC diagnosis and the ability to predict molecular
phenotypes, prognostic features, and even assess the tumour microenvironment, all of
which contribute to a deeper understanding and improved management of colorectal
diseases [83].

4.4. Limitations and Perspectives of AI Applications

AI tools for lung cancer pathology have evolved, incorporating hand-crafted and deep
learning-based unsupervised features [73]. This evolution aligns with the emergence of
digital pathology (DP), driven by advancements in computational power and whole-slide
imaging technology [72]. DP, coupled with AI tools, is aiding pathologists and pulmo-
nologists in various aspects of their work, from remote support to routine diagnosis [73].
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The synergy between AI and pathology continues to advance the field, with promising
implications for the accurate diagnosis and treatment of lung cancer.

Recent developments in the field show promise for CRC pathological analysis, em-
phasising the importance of accurate diagnosis and treatment planning [84]. Goals in this
context include the removal of pre-cancerous polyps and reducing risks associated with un-
necessary polypectomies, highlighting the need for precision in medical interventions [80].
Artificial intelligence, in particular, is emerging as a significant advancement in the field,
with the potential to revolutionise clinical decision-making and improve outcomes for
patients with colorectal diseases, especially CRC [89]. There is a growing emphasis on
AI leveraging in colonoscopy, specifically in the areas of polyp detection and characteri-
sation [80] or image mining and analysis for new insights into tumour biology, which is
directly impacting clinical practice and decision-making [89].

Studies in this domain have explored various model features, including gland seg-
mentation, tumour classification, microenvironment characterisation, and prognosis pre-
diction [84]. While other models show promise, many are still in their early stages of
development. New developments in CRC research are focusing on morphological biomark-
ers, dynamic evaluation of metastases, genetics, and the role of the liver–tumour interface,
all of which contribute to a deeper understanding of tumour biology [89].

4.5. Limitations of This Study

The reason why, within our study, there are identification errors when using pathology
slides with conventional haematoxylin–eosin staining is the presence on the slide of areas
where the pink–violet hues are very close in tone. These areas are physically smaller
in size compared to the others (usually with less clear contours). Usually, errors occur
interspersed in extensive areas that actually correspond to other structures. The level of
detail is dependent on the size of the patches used in supervised learning.

Moreover, errors in delimiting small vessels and airways can occur following tissue
processing for histopathological analysis. In pathology, the processing of tissues for optical
microscopy observations involves several steps, each of which can induce changes (alter-
ations) in blood vessels, airways, and other tissue structures. The main processing steps
and the associated changes are as follows:

• Fixation using chemicals such as formalin to stabilise proteins and cellular structures
to prevent autolysis and degradation. This process can induce artefacts by coagu-
lating proteins and altering the appearance of blood vessels, causing contractions
or stiffening.

• Dehydration of tissue samples with increasing concentrations of alcohol, which can lead
to a reduction in the volume of blood vessels and small airways and their collapse,
thus altering their microscopic appearance.

• Clearing, in which tissues are passed through clearing solutions (usually xylene or
toluene), making them transparent and ready for paraffin infiltration. This can lead to
additional alterations, such as vessel collapse and changes in the spatial relationships
between structures, including lung airways.

• Paraffin infiltration leading to mechanical artefacts, such as distortion or displacement
of tissue structures, including blood vessels. This process can make vessels and
airways appear more rigid and collapsed than in their natural state.

• Microtomy or fine cutting of thin sections for microscopy, which can induce mechanical
artefacts, such as cracking or distorting blood vessels. Sections may show compressed
or deformed vessels and airways due to the pressure of the microtome blade.

• Staining involving various chemicals (e.g., haematoxylin and eosin), which can ac-
centuate or blur certain structural details of blood vessels. Sometimes, dyes can
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cause precipitates or other colouring artefacts, which can mask or alter the natural
appearance of the dishes.

• Fitting the tissue ultrathin sections onto the slides and covering them with another
slide can induce mechanical pressure, which could compress or deform the blood
vessels and airways.

The smaller the patch size, the more faithful the reproduction. It should be noted that
areas, admittedly small in size, are incorrectly identified in the case of pathology slides,
regardless of the size of the analysis patch. As a general rule, however, it can be deduced
that the choice of analysis patch size depends on the objective of the analysis, i.e., the
structures of interest for diagnosis and the precision required in their identification and
delineation. A study in which the influence of the patch size vs. the EO image (resolution,
size of objects in the EO image) was investigated in [11].

This process is used for the conjugate analysis of CT and/or (magnetic resonance
imaging) MRI in conjunction with the analysis of pathological slides to identify biomarkers
that can be extracted from texture analysis. Texture analysis in pathological images, at
different organ levels (CT/MRI) and in tissue (pathological slide), provides a series of
biomarkers that can be independent or correlated. If histopathological biomarkers are
linked to histological type, degree of differentiation, and degree of invasion (perineu-
ral, intravascular), they can be correlated with imaging biomarkers (radiomics). Then,
there is a shift in a diagnostic paradigm, whose integration into clinical practice is dif-
ficult to formulate, specify, or predict. However, our analysis can be complementary
and even integrated into radiomics, with quite broad perspectives, especially if super-
vised learning can be defined in which to build relationships between patches beyond
semantic classification. We think, first of all, of the topological relationships that allow
the reduction in errors by relating a patch to neighbouring patches, when the analysis
of the content would lead to a completely different classification than the patches in the
analysed area.

Medical images also remain to be explored in various capture conditions. For example,
CT images can be examined in different windows corresponding to optimal visualisation,
depending on the anatomical region where the object is located, for instance, the chest
window, brain window, etc., with or without contrast. Images from pathological slides can
also be analysed at different sizes and in different colorations than the usual haematoxylin–
eosin staining, such as immunohistochemical stains. In the case of both types of medical
images mentioned, a rigorous definition of the classes belonging to healthy tissues and
those corresponding to lesions is necessary. Last but not least, it is necessary to define
criteria not only technical but also related to obtaining relevant information for diagnosis,
so that it is possible to compare and evaluate in the form of benchmarking the various
technical solutions of digital pathology.

The small sample size of the medical datasets used in this study represents an inherent
limitation. As this work was designed as a proof-of-concept demonstration, the reported
accuracy values are intended only to show the feasibility of applying EO-inspired semantic
labelling to medical images, and not to establish clinical performance benchmarks. Future
studies will involve significantly larger, multicentre datasets, enabling statistical hypothesis
testing and more robust validation of the methodology.

However, the results in this study could help us to identify possible causes why one
city has a higher number of patients with a particular disease (e.g., patients with cancer
or schizophrenia) compared to another city where the number is smaller, considering the
structure of the city (e.g., the surface of the green areas, number of hospitals, the surface of
the industrial area). Such a perspective could be ground-breaking in medical epidemiology.
These are the premises for a correlation between the information extracted from the Earth
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observation images related to environmental conditions and the information in medical
images (such as disease radiological or histopathological phenotypes), providing in-depth
knowledge about environment-related disease aetiologies. Furthermore, this analysis
includes the temporal component of all types of images to study the evolution of the
cities/areas or the patients in time. We would also like to mention that such a vision
idea/conception has not been approached so far in the literature.

The results of the Earth observation image analysis should answer questions such
as: How green is the city? How many parks are in the city? Is there a forest or a lake in
the city or nearby? How many hospitals are there in the area? Is it an area with a high
density of houses? Is it an industrialised city? This information should be grouped into a
semantic model of the city/region, obtained based on these images and further validated
using existing reference datasets (e.g., in situ measurements, CORINE Land Cover, Urban
Atlas, OpenStreetMap), as well as the experience of remote sensing experts in the field.

Similarly, a semantic medical model can be obtained for a particular disease or several
diseases by analysing the medical images. Comparing these results to previous hospital
results and the physicians’ expertise validates them.

In creating a global health model of a city/area (see Figure 22), other information can
be added to the previous two models. For instance, the Copernicus Sentinel-5P mission
performs atmospheric measurements with a high spatio-temporal resolution. Thus, one
can easily add the pollution level of the area, ozone levels, UV radiation, and climate
monitoring and forecasting. Also, additional data layers can be added from the Copernicus
Sentinel-3 mission dedicated to water vapour absorptions and atmospheric and aerosol
monitoring. Figures 23 and 24 show the domain ontology and the knowledge graph [5]
created for the global health model of a city. In addition, the temporal component of images
can be added to the model helping to observe the changes in a city. In addition, these
urbanism or pollution features can be added to the medical information about monitored
patients who, for example, are recovering from an illness.

Although this study does not include a full epidemiological case study, the unified
methodology we propose has significant potential for future public health applications. By
using identical semantic labelling workflows for both environmental and medical datasets,
it becomes possible to generate geographically resolved maps that link environmental risk
factors (e.g., pollution levels, urbanisation patterns) with disease phenotypes observed in
medical images. Future work will focus on pilot studies, in which lung cancer imaging
datasets will be correlated with EO-derived air quality data, as well as exploring links
between colorectal cancer patterns and environmental indicators such as water quality
and agricultural practices. These applications will require large, geographically indexed
datasets and collaboration with public health institutions.
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Figure 22. The proposed flowchart to achieve a global health model for a city includes the EO model,
the medical model, and other information (pollution level over a city analysed using, for example,
Sentinel-5P) that can help create such a model.

 

Figure 23. A domain ontology linked to a health application. The short abbreviations are L for Labels,
EO for Earth Observation, CT for computed tomography, and AT for atmospheric.
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Figure 24. Knowledge-graph representation of a model adapted to the global health of a city domain.
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5. Conclusions
The described system comprises novel concepts to help Earth observation, medical,

and other data users access and discover general information from large archives of images,
and quickly collect the desired detailed information to act accordingly. This involves
dealing with complicated spatial, structural, and temporal relationships between land
surface categories and objects appearing in the image.

In this paper, we have shown the usefulness and the adaptation of the proposed method
for the semantic labelling of various types of images acquired by different instruments.

In the first case, we considered EO images acquired by five different instruments
covering four cities from different parts of the world. The method described in Figure 1
(top part) was successfully applied, and the remote sensing experts were able to seman-
tically label these images with predefined labels [54], with an accuracy of 95% [11]. An
important observation is that the better the sensor resolution, the more semantic classes
and more accurate classification results. Also, an appropriate patch size depends on the
sensor resolution; an optimal patch size vs. resolution is presented in [11,12]. A detailed
comparison of different methods (e.g., CNN, auto-encoder, hybrid methods, etc.) applied
to the EO images was performed in [12].

We considered medical images acquired with four different instruments in the second
case. The method described in Figure 1 (bottom part) was successfully applied to medical
images without major software modifications. Here, the expected image content is already
considered when choosing an appropriate patch size and an efficient feature extraction
technique. The grouping of the patches into semantic classes was made interactively by
several experts in the field (physicians), who gave meaning to the extracted classes by
assigning a best-fitting semantic label to each class (in this case, we used no predefined
semantic labels like for the EO images). The visual accuracy obtained for these semantic
classes lay between 80% and 85% (based on the feedback collected from the doctors). We
point out that for medical images, a more detailed study must be performed about the
optimal patch size and the features to be extracted, which depends on the type of the
instrument used to acquire the medical image and on the content of the image.

The reason behind the lower (visual) results of the unsupervised learning may be the
fact that the features are not captured by the 4 × 4 pixels. The size of this patch needs to be
adjusted according to the resolution and size of the objects (class content too small) in the
case of the medial images. Regarding the EO images, a patch of 4 × 4 pixels gives good
results using this method [42].
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