Ramirez Agudelo, Oscar Hernan und Gorea, Nicoleta und Reif, Aliza Katharina und Bonasera, Lorenzo und Karl, Michael (2025) The role of noisy data in improving CNN robustness for image classification. In: Proceedings of SPIE, volume 13606, Applications of Machine Learning 2025, 13606, P1-P9. Proceedings of SPIE is SPIE — The International Society for Optics and Photonics. Applications of Machine Learning 2025 (part of SPIE Optical Engineering + Applications), 2025-08-03 - 2025-08-07, San Diego, California, USA. doi: 10.1117/12.3063563. ISSN Print: 0277-786X; Online: 1996-756X.
|
PDF
4MB |
Kurzfassung
Data quality plays a central role in the performance and robustness of convolutional neural networks (CNNs) for image classification. While high-quality data is often preferred for training, real-world inputs are frequently affected by noise and other distortions. This paper investigates the effect of deliberately introducing controlled noise into the training data to improve model robustness. Using the CIFAR-10 dataset, we evaluate the impact of three common corruptions, namely Gaussian noise, Salt-and-Pepper noise, and Gaussian blur at varying intensities and training set pollution levels. Experiments using a Resnet-18 model reveal that incorporating just 10% noisy data during training is sufficient to significantly reduce test loss and enhance accuracy under fully corrupted test conditions, with minimal impact on clean-data performance. These findings suggest that strategic exposure to noise can act as a simple yet effective regularizer, offering a practical trade-off between traditional data cleanliness and real-world resilience.
| elib-URL des Eintrags: | https://elib.dlr.de/217513/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
| Zusätzliche Informationen: | N.A. | ||||||||||||||||||||||||
| Titel: | The role of noisy data in improving CNN robustness for image classification | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | November 2025 | ||||||||||||||||||||||||
| Erschienen in: | Proceedings of SPIE, volume 13606, Applications of Machine Learning 2025 | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| Band: | 13606 | ||||||||||||||||||||||||
| DOI: | 10.1117/12.3063563 | ||||||||||||||||||||||||
| Seitenbereich: | P1-P9 | ||||||||||||||||||||||||
| Herausgeber: |
| ||||||||||||||||||||||||
| Verlag: | Proceedings of SPIE is SPIE — The International Society for Optics and Photonics | ||||||||||||||||||||||||
| Name der Reihe: | Proceedings of SPIE | ||||||||||||||||||||||||
| ISSN: | Print: 0277-786X; Online: 1996-756X | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | deep learning, CNNs, data quality, CIFAR-10, noise injection, image classification, model robustness | ||||||||||||||||||||||||
| Veranstaltungstitel: | Applications of Machine Learning 2025 (part of SPIE Optical Engineering + Applications) | ||||||||||||||||||||||||
| Veranstaltungsort: | San Diego, California, USA | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 3 August 2025 | ||||||||||||||||||||||||
| Veranstaltungsende: | 7 August 2025 | ||||||||||||||||||||||||
| Veranstalter : | SPIE – The International Society for Optics and Photonics (as part of the Optical Engineering + Applications program) | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | V - keine Zuordnung | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - keine Zuordnung | ||||||||||||||||||||||||
| Standort: | Rhein-Sieg-Kreis | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für KI-Sicherheit | ||||||||||||||||||||||||
| Hinterlegt von: | Ramirez Agudelo, Oscar Hernan | ||||||||||||||||||||||||
| Hinterlegt am: | 20 Okt 2025 08:26 | ||||||||||||||||||||||||
| Letzte Änderung: | 20 Okt 2025 08:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags