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ABSTRACT

Data quality plays a central role in the performance and robustness of convolutional neural networks (CNNs)
for image classification. While high-quality data is often preferred for training, real-world inputs are frequently
affected by noise and other distortions. This paper investigates the effect of deliberately introducing controlled
noise into the training data to improve model robustness. Using the CIFAR-10 dataset, we evaluate the impact
of three common corruptions, namely Gaussian noise, Salt-and-Pepper noise, and Gaussian blur at varying
intensities and training set pollution levels. Experiments using a Resnet-18 model reveal that incorporating just
10% noisy data during training is sufficient to significantly reduce test loss and enhance accuracy under fully
corrupted test conditions, with minimal impact on clean-data performance. These findings suggest that strategic
exposure to noise can act as a simple yet effective regularizer, offering a practical trade-off between traditional
data cleanliness and real-world resilience.
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1. INTRODUCTION

In recent years, convolutional neural networks (CNNs) have formed the backbone of numerous computer vi-
sion applications, achieving state-of-the-art results in image classification, object detection, and segmentation
tasks.!™* These advancements have been largely driven by increased computational power, larger annotated
datasets, and improved network architectures. However, such success is critically dependent on the quality of
the data used during training and evaluation. Data quality, described by attributes such as accuracy, consistency,
completeness, and representativeness, strongly influences model performance, generalizability, and robustness in
practical deployment scenarios.?””

Despite the availability of high-quality benchmark datasets like ImageNet® and medium-scale benchmarks
such as CIFAR,” real-world image data often contains imperfections. It is susceptible to various degradations,
including sensor noise, poor lighting, motion blur, occlusion, and compression artifacts.'® 12 These distortions
can substantially impair model performance, particularly when the training data does not reflect such variability.
The resulting domain shift between clean training data and noisy real-world inputs poses a significant challenge
to robustness.!371°

To address this challenge, researchers should focus on both data quality management and model robustness.
While conventional best practices emphasize curating clean and balanced datasets, recent work has shown that
strategically incorporating degraded or noisy data during training can improve robustness to real-world noise.'6-19
Instead of removing all noise entirely, exposing models to controlled levels of degradation can serve as a form of
regularization, enhancing their ability to generalize to unseen conditions.??-2!

In this study, we investigate how different types of image degradation, specifically Gaussian noise, Salt-and-
Pepper noise, and Gaussian blur affect the robustness of CNNs in image classification tasks. Building on prior
research into noise robustness and data augmentation, we conduct a series of experiments using the CIFAR-10
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dataset, adding different intensities of Gaussian noise, Salt-and-Pepper noise, and Gaussian blur to evaluate their
impact on model performance.?”?? We train the resulting models on both clean and noisy images to evaluate
how noise exposure during training influences classification performance on both clean and degraded test sets.
Performance is assessed using top-1 classification accuracy, with 10% of the training set held out for validation
(see more details in Sect. 3). The contributions of this work are threefold:

e We conduct an empirical analysis to evaluate the effect of noisy data inclusion on CNN robustness, adding
to recent efforts in data-centric deep learning.?3

e We propose a simple yet effective noise-augmented training strategy that improves generalization to noisy
test conditions while maintaining strong performance on clean data.??

e We discuss trade-offs between classical definitions of high data quality and the benefits of incorporating
noise to promote real-world adaptability.”2°

The findings underscore the need to reconsider rigid definitions of data quality. We advocate for a broader
perspective that values both cleanliness and representativeness of operational environments. This shift carries
important implications for building machine learning systems that operate reliably under unpredictable and
adverse real-world conditions.

Finally, we structure this paper as follows. Section 2 reviews related literature. Section 3 outlines the
methodology used in this study. Section 4 presents the results, and Section 5 discusses them in detail. Section 6
concludes the paper. Appendix A reports the baseline performance of the adopted model prior to the experiments
described in this work.

2. RELATED WORKS

The importance of data quality in training robust machine learning models has been extensively studied. Datasets
such as ImageNet® and CIFAR-10° have been foundational for advancing deep learning in image classification.
These datasets are carefully curated to ensure consistency and representativeness, which are critical for reliable
model performance.?6-28

Despite these benchmarks, real-world images often suffer from degradations including noise, blur, and com-
pression artifacts, which can negatively impact model accuracy when models are trained solely on clean data.2?3°
Addressing this, Hendrycks and Dietterich!® benchmarked the robustness of neural networks against a wide range
of common corruptions, demonstrating the vulnerability of standard CNNs to noise and other perturbations.

The work by De Vries et al.3! introduces Cutout, a regularization technique that randomly masks out
square regions of input images during training. While Cutout is not explicitly designed for robustness to noise or
corruptions, it improves generalization and has been shown to enhance accuracy on clean test data. Additionally,
data augmentation has emerged as a practical method to improve robustness by introducing variability during
training.'® 1732 For example, Lopes et al.'® propose Patch Gaussian, which injects Gaussian noise into random
localized regions of input images. This method improves robustness to common corruptions without sacrificing
and sometimes even improving accuracy on clean data.

Beyond generic augmentation, adversarial training, as introduced by Goodfellow et al.,* involves training
models on deliberately perturbed examples to increase robustness against worst-case input alterations. Although
adversarial robustness focuses on targeted perturbations, it shares the goal of improving performance under
degraded input conditions.?*

Techniques such as random cropping, flipping, and synthetic noise injection are widely used to enhance
generalization.?® In particular, noise injection during training has been shown to encourage models to learn
more invariant features, improving resilience to noisy inputs.?® Techniques such as mixup3® blend clean and
noisy samples to achieve better generalization and robustness.

Additional strategies to balance noise include curriculum learning,” noise-aware loss functions,®® and adap-
tive noise filtering during training.?® Domain adaptation techniques have also been applied to address shifts
caused by image quality variations.*’
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This work aims to complement these efforts by empirically analysing the effect of incorporating different type
of noises such as Gaussian noise, Salt-and-Pepper noise, and Gaussian blur into CIFAR-10 benchmark dataset
as a test bed. By evaluating classification accuracy on both clean and noisy test sets, we aim to clarify how data
quality, viewed as a spectrum from clean to noisy, influences model robustness in practical settings.

3. METHODOLOGY

This section describes the methodology adopted to investigate the impact of training data quality degradation on
the robustness of convolutional neural networks (CNNs) for image classification by using the CIFAR-10 dataset.’
In Section 3.1 details about the data, architecture, and training are provided. Subsequently, in Section 3.2
information about the type of noise and values selected are presented. Finally, the metrics used to evaluate the
models are introduced in Section 3.3.

3.1 Model design and training overview

This section provides a comprehensive overview of the model design and training methodology employed in this
work.

3.1.1 Dataset

The CIFAR-10 dataset contains 60,000 color images, each with a resolution of 32x32 pixels and three RGB
channels. These images are evenly distributed across 10 classes: plane, car, bird, cat, deer, dog, frog, horse, ship,
truck. This widely studied dataset offers excellent opportunities for comprehensive investigation and bench-
marking.»>%16  Due to its manageable size and complexity, CIFAR-10 is frequently used to evaluate novel
machine learning architectures, optimization techniques, and regularization strategies. Despite its simplicity
compared to large-scale datasets like ImageNet, it remains a valuable testbed for rapid prototyping and ablation
studies, particularly in convolutional neural networks (CNNs) and more recent deep learning models. Further-
more, CIFAR-10 continues to serve as a baseline dataset in exploring model robustness, transfer learning, and
self-supervised learning paradigms.

3.1.2 Model Architecture

For this work, the Resnet-18 architecture implemented in the Github repository https://github. com/kuangliu/
pytorch-cifar by kuangliu is adopted. Appendix A shows the training performance achieved by adopting this
repository. An accuracy of approximately 93% is being retrieved, which is also reported in the open-source
repository. This architecture serves as the backbone for our evaluations. To ensure fair comparisons, consistent
training hyperparameters across all conditions are maintained. The network is trained using stochastic gradient
descent (SGD) with a fixed learning rate o = 0.01 and batch size of 128 and 100 for the training and testing set,
respectively and total of 100 epochs. We select the best-performing model based on validation loss.

3.1.3 Training

For the experimental setup, we split 45000 images for training (90% of the original training set), 5000 images
for validation (10% of the training set), and kept the test set unchanged at 10,000 images. We apply standard
preprocessing, including normalization and random cropping, consistently across all experiments, following the
implementation provided by kuangliu. To ensure robust results, we run each experiment 10 times per noise level
and calculate the mean and standard deviation. This repetition mitigates the effects of randomness inherent
in training, such as weight initialization, data shuffling, and stochastic optimization. By reducing variance
and increasing consistency, this approach yields more reliable and statistically sound performance estimates,
while also improving reproducibility by ensuring that results reflect genuine model behavior rather than random
fluctuations.
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3.2 Noise Injection

We introduce three different types of noise: Gaussian, Salt-and-Pepper, and Gaussian blur. To analyze the
impact of noise severity on training, we create multiple training subsets with varying percentages of noisy
images, corresponding to the following pollution levels: 0% (clean), 5%, 10%, 15%, 20%, 25%, 50%, 75%, and
100% (fully noisy). For each pollution level (9 levels), the corresponding fraction of training samples is randomly
selected and corrupted by adding noise, while the respective rest remains clean. In the following, we describe
the characteristics of each noise type in detail. This approach models realistic scenarios where data quality
varies within the training set, allowing us to systematically evaluate the effect of mixed-quality data on model
robustness.

3.2.1 Gaussian Noise

Gaussian noises with zero mean and several levels of standard deviation (o) are added to the training images to
simulate quality degradation®. Specifically, we focus on the effect of Gaussian noise introduced at varying levels
to the training data, examining how different proportions of noisy samples influence model performance.

To assess the robustness of the proposed approach under varying levels of input perturbations, we inject
additive Gaussian noise into the input data. The noise is sampled from a normal distribution N(0,02), where
o denotes the standard deviation controlling the noise intensity. This simulates naturally occurring sensor noise
or environmental variability in real-world acquisition settings. The noisy input I,y is generated as:

Inoisy = Iclcan + Ngaussian (1)

where Icjean is the original input and Ngaussian ~ N(0,0?) is the zero-mean Gaussian noise.

The probability density function of the Gaussian distribution is given by:

p(z) = \/;7 exp (—W) (2)

with p = 0 and varying values of o to control the noise strength.

3.2.2 Salt-and-Pepper Noise

To evaluate the robustness of the proposed approach against impulsive noise, we study the introduction of
Salt-and-Pepper noise to the input data. Salt-and-Pepper is a form of impulse noise where certain pixel values
are randomly replaced with either the minimum (“pepper”) or maximum (“salt”) intensity values in the input
range.*! This simulates sensor malfunctions or bit errors in transmission. We generate the noisy input Thoisy as
follows:

Lnin, with probability ppepper
Loisy (%, 7) = 4 Imax, with probability psait (3)
Tctean(i, ), with probability 1 — psatt_and_pepper
where Iciean (4, j) denotes the original clean input at pixel location (7, 7), and psals_and_pepper = Dsalt + Ppepper 1S

the total noise density. I, and . represent the minimum and maximum allowable intensities, respectively.
In this work, psaic and ppepper contribute equally.

*The values of the levels are introduced in Section 3.2.4.
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3.2.3 Gaussian Blur

In addition to noise injection, we apply Gaussian blur to evaluate the model’s robustness against loss of fine-
grained detail. Gaussian blur is a common image transformation that simulates sensor defocus or motion-induced
blur by convoluting the image with a Gaussian kernel. This operation smooths the image, attenuating high-
frequency components such as edges and textures. Formally, the blurred image Iyureq is obtained by the
convolution:

Iblurred(ia.j) = (Iclean * GU)(i,j), (4)

where GG, denotes a 2D Gaussian kernel with standard deviation o, defined as:

1 .’132 _|_y2
Go’(‘ray) = ﬁexp <_ 20_2

The kernel is centered around (z,y) = (0,0), and the convolution is applied across all pixels in the input.

(5)

3.2.4 Values

To systematically evaluate the robustness of our method under varying data corruptions, we consider three
severity levels (mild, moderate, and strong) based on the corresponding parameter values for each type of noise.
Intensity values for the Salt-and-Pepper noise are derived by the work of Wan et al.#? Instead, Gaussian blur the
values are adapted from the work Yoshihara et al.*> Here, the moderate and strong levels are set to half of those
used by the author’. In the case of Gaussian noise, values are decided through preliminary experiments, based
on comparable perceived degradation in relation with the other pollution types. An overview of the parameter
settings for each level is provided in Table 1. Figure 1 shows as an example the impact of the respective parameter
settings for the class plane.

Table 1: Noise and level of pollution categorized as mild, moderate, and strong, with associated parameters. For
the Salt-and-Pepper noise, psaiy and ppepper contribute equally. For example, when psai¢_and pepper = 0.1 (mild),
corresponds to Psaiy = Ppepper = 0.05.

Type Mild Moderate Strong
Gaussian noise (o) 0.1 0.3 0.5
Salt-and-Pepper noise (psals_and_pepper)  0.05 0.1 0.2
Gaussian blur (opur) 0.5 1.0 2.0

3.3 Evaluation Metrics and Analysis

Performance is primarily evaluated using classification accuracy on the clean test set and on test sets with
varying the noise levels, to assess model robustness. Additionally, training and validation loss curves are analyzed
to understand convergence behavior under different noise pollution levels. Results are aggregated over the 10
runs per pollution level to calculate mean and standard deviation for all metrics (see also Sect. 3.1.3). The main
focus is to plot, compare, and assess the accuracy and loss as functions of the training data pollution percentage,
revealing how incorporating noisy data during training influences robustness against noisy test inputs.

4. RESULTS
4.1 Loss

This section describes the results for the three different noise types in terms of test loss.

By doing so, we can sufficiently demonstrate our method.
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(a) Gaussian noise

Original

(b) Salt-and-Pepper noise

Original 0.05 0.1 0.2

(c) Gaussian blur

Original 200

Figure 1: Impact of different types and intensities of image degradation on CIFAR-10.

4.1.1 Gaussian Noise

Figure 2 shows the average test loss of the model training on CIFAR-10 data with varying intensities of Gaussian
noise o € {0.1,0.3,0.5}. Figure 2a shows the test performance for the three levels of Gaussian noise on the
clean test set, revealing that models trained with small amounts of Gaussian noise (¢ = 0.1) maintain the lowest
average test loss even as training noise levels increase. In contrast, higher-intensity noise (o = 0.5) begins to
degrade performance, especially at higher training noise percentages.

Figure 2b demonstrates the model’s performance on the corresponding fully corrupted test set. A small
amount of noise augmentation during training (as low as 5%) leads to a substantial reduction in test loss,
indicating that robustness improves with moderate exposure. However, training with excessively strong noise
(o0 = 0.5) results in higher test loss, suggesting diminishing returns or over-regularization. Overall, these plots
highlight the trade-off between robustness and clean-data performance as a function of both noise intensity and
training exposure. Moderate augmentation with low-intensity noise (o = 0.1 or 0.3) provides the best balance.

4.1.2 Salt-and-Pepper Noise

Figure 3 presents the average test loss of the model trained on CIFAR-10 data with varying levels of Salt-and-
Pepper noise applied to the training set. Results are shown for three intensities psait_and pepper € {0.05,0.1,0.2}
and are evaluated in the same manner as in Section 4.1.1: on clean test data (left) and fully corrupted test data
(right). On clean test data, as shown in Figure 3a, increasing the proportion of noisy images in the training set
generally results in higher test loss, with a more pronounced effect at higher noise levels. The model trained
With psalt_and_pepper = 0.2 consistently exhibits the highest loss, indicating a greater susceptibility to overfitting
on noisy features.
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Figure 2: Average test loss across different Gaussian noise intensities and varying training noise percentages.
Shaded areas indicate +1 standard deviation over 10 runs.
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Figure 3: Average test loss across different Salt-and-Pepper noise intensities and varying training noise percent-
ages. Shaded areas indicate +1 standard deviation over 10 runs.

Conversely, when evaluated on fully corrupted test data, as shown in Figure 3b, the trend reverses: models
trained without noise perform poorly, while those trained with any of the tested noise intensities achieve signif-
icantly lower test loss. The most notable improvement occurs when increasing training noise from 0% to 10%,
after which performance levels off across all intensities. These results suggest that adding a small amount of noise
to the training data acts as an effective regularizer, enhancing the model’s robustness to real-world corruptions.
Overall, the findings underscore the importance of aligning training conditions with deployment scenarios when
robustness to noise is required.

4.1.3 Gaussian Blur

Figure 4 presents the average test loss of the model trained on CIFAR-10 data with varying levels of Gaussian
blur applied to the training set. The results are shown for three different noise intensities, op € {0.5,1.0,2.0},
and are evaluated as described in the previous sections. On clean test data, as shown in Figure 4a, increasing
the proportion of noisy images in the training set generally leads to higher test loss, with the model trained
with op = 2.0 consistently exhibiting the highest loss. This indicates its vulnerability to overfitting on blurred
features.

On the contrary, when evaluated on fully corrupted test set shown in Figure 4b, the trend is reversed: models
trained with low or no noise perform poorly, while those trained with moderate noise intensities (op,y = 1.0 and
2.0) achieve significantly lower test loss. The most substantial improvement occurs when the noise is of the level
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Figure 4: Average test loss across different Gaussian blur intensities and varying training noise percentages.
Shaded areas indicate +1 standard deviation over 10 runs.

of 5% in the training noise, after which the performance plateaus across all intensities. Similarly to the results of
the previous sections, these results also indicate that adding a small degree of noise to the training data can act
as a beneficial form of regularization, helping the model better withstand input degradation. This underscores
the value of tailoring training conditions to reflect the types of noise and variability expected during deployment,
especially when robustness is critical.

4.2 Accuracy

This section describes the results for the three different noise types in terms of test accuracy.

4.2.1 Gaussian Noise

Figure 5 shows the average test accuracy of the model trained on CIFAR-10 data with varying intensities of
Gaussian noise. Figure 5a presents the test performance on the clean test set for these three noise levels, revealing
that the model trained with the lowest noise intensity (¢ = 0.1) maintains a relatively stable performance. In
contrast, higher noise intensities (¢ = 0.3 and 0.5) begin to degrade accuracy, particularly as the proportion of
noisy training data increases.
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(a) Effect of training noise on fully clean test performance. (b) Effect of training noise on fully polluted test perfor-
mance.

Figure 5: Average test accuracy across different Gaussian noise intensities and varying training noise percentages.

Shaded areas indicate +1 standard deviation over 10 runs.

Figure 5b demonstrates the model’s performance with the respective fully polluted test set. Here, a small
amount of noise augmentation during training (as low as 5%) leads to a substantial improvement in the accuracy,
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showing that robustness improves with moderate exposure. Additionally, training with excessively strong noise
(o0 = 0.5) leads to a reduction in the average accuracy of the fully polluted (with the respective intensity) test
set. Here the results also suggest that moderate augmentation with low-intensity noise (o = 0.1 or 0.3) achieves
the best balance as shown in Figure 2. For the strongest intensity (o = 0.5), and also considering the results in
Sect. 4.1.1, the trained model could be useful for extreme polluted test sets, as it delivers a better performance
when compared to the model trained with only clean data.

4.2.2 Salt-and-Pepper Noise

Figure 6 shows the impact of Salt-and-Pepper noise across varying noise intensities and proportions of corrupted
training data, ranging from 0% to 100%. Figure 6a presents the average test accuracy on a clean test set.
As the proportion of noisy training data increases, performance on clean data remains relatively stable, with
only a slight drop at higher noise intensities. Models trained with low-intensity noise (pPsait_and_pepper = 0.05)
maintain an accuracy around 92%, while those trained with higher-intensity noise (psait_and_pepper = 0.2) decrease
modestly to about 91%. In contrast, Figure 6b illustrates performance on a fully corrupted test set, where
models trained without noise perform poorly, particularly for psait_and_pepper = 0.2, achieving only about 25%
accuracy. However, introducing even a small proportion of noisy training data (10 to 20%) leads to a considerable
improvement in robustness, with all models reaching approximately 91% accuracy. These results demonstrate
that noise augmentation can substantially enhance robustness to test-time corruption, with minimal impact on
clean-data performance.
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Figure 6: Average test accuracy across different Salt-and-Pepper noise intensities and varying training noise
percentages. Shaded areas indicate +1 standard deviation over 10 runs.

4.2.3 Gaussian Blur

Figure 7 shows the impact of Gaussian blur across varying noise intensities and proportions of corrupted training
data, ranging from 0% to 100%. Figure 7a presents the average test accuracy on a clean test set. As the proportion
of noisy training data increases, performance on clean data degrades, particularly for higher noise intensities.
Models trained with low-intensity blur (op,, = 0.5) maintain relatively stable accuracy around 92%, while those
trained with higher-intensity blur (op, = 1.0 and 2.0) drop around 20%. In contrast, Figure 7b illustrates
performance on a fully corrupted test set, where models trained without noise perform poorly, especially for
Oplur = 2.0, achieving only about 20% accuracy. However, introducing even a small proportion of noisy training
data (10 to 20%) leads to a substantial improvement in robustness, as for moderate levels of blur (opj,y = 0.5
and 1.0) the accuracy reaches approximately 90% and for the strongest one (op1,, = 2.0) the accuracy is above
80%. These results show that training with the three different levels of blur can significantly enhance robustness.

5. DISCUSSION

To analyze the impact of different noise types on model robustness, we examine the average test loss on CIFAR-
10 as the training inputs are progressively corrupted. For this analysis, we select the highest tested intensity
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Figure 7: Average test accuracy across different Gaussian blur intensities and varying training noise percentages.
Shaded areas indicate +1 standard deviation over 10 runs.

for each noise type: Gaussian noise (o = 0.5), Salt-and-Pepper noise (Psals_and_pepper = 0.2), and Gaussian blur
(Ublur = 20)

5.1 Loss

As shown in Figure 8, all three noise types, for the highest intensity respectively, exhibit a pronounced drop in
test loss with as little as 5% of the training data being polluted. This early drop suggests that exposure to small
amounts of input noise can act as an implicit regularizer, improving generalization.

Among the three perturbations, Salt-and-Pepper noise consistently yields the lowest test loss across all levels
of input corruption, indicating greater robustness to this type of discrete noise. Gaussian noise performs similarly
well, whereas Gaussian blur results in slightly higher test loss, particularly at lower corruption levels. However,
the differences between the methods diminish beyond 10% corruption, where all curves flatten, suggesting the
model’s ability to adapt to noisy training data once a certain exposure threshold is reached.

5.2 Accuracy

In Figure 9 all three noise types exhibit a pronounced enhancement in accuracy loss with as little as 5% of
the training data being polluted. This suggests again that exposure to small amounts of input noise can act
as an implicit regularizer, improving generalization. Among the noise types, Salt-and-Pepper noise at highest
intensity yielded the most robust performance across pollution levels, while Gaussian blur showed the least
benefit, particularly at low exposure. Nevertheless, all models exhibited a convergence in performance after
about 10% of noisy training data, highlighting this threshold as sufficient to trigger meaningful robustness
without compromising clean-data accuracy.

5.3 Additional experiments on pollution intensity

Although not reported in the main paper, we are conducting new experiments with stronger intensity values of
Salt-and-Pepper noise and Gaussian blur (i.e., Psait_and pepper = 0.4, oplar = 4.0). The preliminary results for
loss and accuracy on both the clean and fully polluted test sets remained unchanged. On the clean test set,
the loss tends to increase with higher training noise. Accuracy continues to decrease slightly as training noise
increases, but the effect is not significant. For the fully polluted test set, the loss is reduced at higher training
noise levels, and accuracy improves starting from approximately 5-10% training noise. Overall, the observed
behavior is consistent with the results presented in Section 4.2.
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conditions for the average test Loss.

5.4 Comparison to SOTA

We build on prior work that uses data augmentation to improve model robustness. De Vries et a pro-
posed Cutout, a regularization technique that removes rectangular regions from training images. Although not
specifically designed for robustness against corruptions, Cutout improves generalization and enhances clean-data
accuracy. Later, Lopes et al.'® introduced Patch Gaussian augmentation, which injects Gaussian noise into
localized patches rather than the entire image. Their method preserves clean-image accuracy while improving
robustness to localized corruptions. In contrast, we apply global noise to entire images and evaluate different
noise types across a range of intensities and proportions. Our results confirm that even small amounts of noise
whether structured or unstructured help CNNs generalize to noisy conditions. While Cutout and Patch Gaussian
focus on structural occlusion or local noise, our approach shows that typical sensor degradations like blur and
impulse noise can be just as effective for improving robustness. Although our experiments show a degradation
in accuracy for higher noise intensities, the findings collectively underscore the value of training with imperfect
inputs.

1.31

5.5 Balancing Clean Data and Real-World Robustness

This experimental setup indicate that incorporating a degree of noise into the training data can significantly
enhance model robustness, especially when test images are subject to similar forms of degradation. These findings
suggest that strategically managing data quality by balancing clean and noisy data can lead to more reliable and
resilient models suitable for deployment in real-world conditions.

These findings invite a critical reevaluation of classical definitions of data quality, which have traditionally
emphasized cleanliness, consistency, and minimal noise. While such criteria aim to optimize model training under
ideal conditions, our results suggest that strict adherence to these standards may limit model robustness in real-
world scenarios. Introducing controlled amounts of representative noise may slightly deviate from conventional
data quality metrics, but it offers clear benefits for generalization to noisy, imperfect inputs. This approach is
particularly valuable in safety-critical applications, where operational environments are often unpredictable and
robustness is essential.
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Figure 9: Impact of training noise on all pollution types on highest intensity values in fully polluted testing
conditions for the average test accuracy.

6. CONCLUSION

This study presents an empirical investigation into how the inclusion of noisy data during training influences
the robustness of CNNs in image classification tasks. To this end, Gaussian noise, Salt-and-Pepper noise, and
Gaussian blur were systematically introduced into varying proportions of the CIFAR-10 training dataset. Model
performance was then evaluated on both clean and degraded test inputs. The findings consistently indicate
that even limited exposure to noise during training, typically as low as 5%, can substantially reduce test loss.
Notably, incorporating just 10% noisy data during training significantly enhances robustness, leading to improved
accuracy on corrupted test samples.

Overall, the results challenge traditional assumptions regarding the necessity of purely clean datasets for
training high-performing models. Instead, they support a more nuanced perspective in which moderate and
representative imperfections during training act as a form of regularization, thereby improving model resilience
under real-world conditions. These insights highlight the importance of reevaluating data quality criteria in the
development of Al systems, particularly for safety-critical or real-world applications where input imperfections
are the norm.
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APPENDIX A. CIFAR-10
A.1 Loss clean dataset

To assess the impact of non-determinism during training, we trained the model on CIFAR-10 over 10 independent
runs and report the mean and standard deviation of the training and validation loss across 200 epochs (see
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Figure 10). The training loss consistently decreases across all runs, exhibiting a smooth exponential decay with
negligible variance, and converges near zero. This indicates that the model is able to fit the training data well,
and that training randomness, such as random initialization, data shuffling, and dropout, has minimal impact
on the convergence of the training loss.

In contrast, the validation loss decreases rapidly during the initial 20-30 epochs, then continues to decrease
at a slower rate before plateauing around epoch 100. The final validation loss stabilizes around 0.25 with a
noticeably higher variance compared to the training loss, especially in the early and intermediate epochs. This
behavior reflects the model’s generalization capacity and highlights a moderate sensitivity to non-deterministic
factors, which primarily affect validation performance rather than training convergence. The increasing gap
between training and validation loss over time suggests a degree of overfitting, which is typical for deep models
trained on CIFAR-10 without aggressive regularization. These results illustrate that while the optimization
dynamics are largely robust to stochastic effects, the model’s generalization is more susceptible to variability
introduced by non-determinism in the training pipeline.

1.4 — trallmn(.;
validation

0 25 50 75 100 125 150 175 200
Epochs

Figure 10: Loss single clean dataset.

A.2 Accuracy clean dataset

Figure 11 illustrates the training and validation accuracy over 200 epochs, averaged across 10 independent
runs, with shaded regions indicating the standard deviation. The training accuracy exhibits a steady increase
throughout training, rapidly approaching near-perfect performance (>99%) and plateauing after approximately
100 epochs. This reflects the model’s strong capacity to fit the CIFAR-10 training data, with minimal variability
across runs, confirming the robustness of the optimization process under stochastic conditions.

The validation accuracy also improves sharply during the early epochs, reaching approximately 90% within
the first 30 epochs, and continues to increase more gradually thereafter. It ultimately stabilizes around 93%,
with a standard deviation slightly larger than that of the training accuracy. This suggests that while the model
generalizes well, its performance on unseen data is more sensitive to random factors such as initialization and
data ordering. The persistent gap between training and validation accuracy indicates mild overfitting, consistent
with the trends observed in the loss curves. Nonetheless, the relatively narrow variance bands demonstrate
that the generalization behavior remains stable across repeated runs, highlighting that while non-determinism
introduces some variability, it does not significantly undermine the model’s overall performance on the validation
set.

Finally, Table 2 shows the final test accuracy for the 10 different classes of CIFAR-10 for 100 and 200 epochs,
respectively. Given the marginal improvement between the two configurations, we fixed the number of training
epochs to 100 epochs for the experiments presented in this paper.
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Figure 11: Accuracy single clean dataset.
Table 2: Final classification accuracy per class on the CIFAR-10 for 100 and 200 epcohs.

Class Accuracy (%) Accuracy (%)
(100 epochs) (200 epochs)
Plane 94.30 95.60
Car 96.50 98.10
Bird 89.80 91.40
Cat 83.70 87.70
Deer 93.80 95.00
Dog 88.60 89.60
Frog 95.60 96.40
Horse 95.80 95.80
Ship 95.00 96.60
Truck 95.80 96.00
Final test accuracy 92.89 94.22
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