Klüpfel, Leonard und Burkhard, Lukas und Reichert, Anne Elisabeth und Durner, Maximilian und Triebel, Rudolph (2025) Seeing Through Uncertainty: Robot Pose Estimation Based on Imperfect Prior Kinematic Knowledge. IEEE Transactions on Robotics, 41, Seiten 4459-4478. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TRO.2025.3577030. ISSN 1552-3098.
|
PDF
- Postprintversion (akzeptierte Manuskriptversion)
21MB |
Offizielle URL: https://ieeexplore.ieee.org/document/11027473
Kurzfassung
We present PK-ROKED, a learning-based pipeline for probabilistic robot pose estimation relative to a camera, addressing inaccuracies in forward kinematics, particularly in systems with elastic and lightweight modules. Our approach integrates a probabilistic 2D keypoint detection mechanism that leverages prior knowledge derived from the robot's imprecise kinematics. We further improve the detection accuracy and geometric understanding by incorporating segmentation of the robot arm. The method computes reliable uncertainty estimates, enabling a robust 2D-6D fusion for precise robot arm pose estimation from a single detected keypoint. PK-ROKED requires only synthetic training data, effectively exploits imperfect kine- matics as valuable prior knowledge, and introduces a novel fusion framework for enhanced robot pose estimation. We validate our method on the Panda-Orb dataset, demonstrating competitive performance against state-of-the-art approaches. Additionally, we evaluate on two other robotic systems in real-world scenarios and show its practicality by using the predictions to initialize a tracking algorithm. Code and pre-trained models are available.
| elib-URL des Eintrags: | https://elib.dlr.de/216633/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | Seeing Through Uncertainty: Robot Pose Estimation Based on Imperfect Prior Kinematic Knowledge | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 6 Juni 2025 | ||||||||||||||||||||||||
| Erschienen in: | IEEE Transactions on Robotics | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| Band: | 41 | ||||||||||||||||||||||||
| DOI: | 10.1109/TRO.2025.3577030 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 4459-4478 | ||||||||||||||||||||||||
| Herausgeber: |
| ||||||||||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
| ISSN: | 1552-3098 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Robot Pose Estimation, Learning-based Approaches | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Robotik | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - E3D: Algorithmen und Applikation (RM) [RO], R - Multisensorielle Weltmodellierung (RM) [RO] | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||||||
| Hinterlegt von: | Klüpfel, Leonard | ||||||||||||||||||||||||
| Hinterlegt am: | 05 Nov 2025 15:08 | ||||||||||||||||||||||||
| Letzte Änderung: | 05 Nov 2025 15:08 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags