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Abstract—We present PK-ROKED, a learning-based pipeline
for probabilistic robot pose estimation relative to a camera,
addressing inaccuracies in forward kinematics, particularly in
systems with elastic and lightweight modules. Our approach
integrates a probabilistic 2D keypoint detection mechanism that
leverages prior knowledge derived from the robot’s imprecise
kinematics. We further improve the detection accuracy and
geometric understanding by incorporating segmentation of the
robot arm. The method computes reliable uncertainty estimates,
enabling a robust 2D-6D fusion for precise robot arm pose
estimation from a single detected keypoint. PK-ROKED requires
only synthetic training data, effectively exploits imperfect kine-
matics as valuable prior knowledge, and introduces a novel fusion
framework for enhanced robot pose estimation. We validate our
method on the Panda-Orb dataset, demonstrating competitive
performance against state-of-the-art approaches. Additionally, we
evaluate on two other robotic systems in real-world scenarios
and show its practicality by using the predictions to initialize a
tracking algorithm. Code and pre-trained models are available.

Index Terms—Deep Learning in Robotics and Automation,
Computer Vision for Other Robotic Applications, Sensor Fusion,
Visual Tracking.

I. INTRODUCTION

HE primary objective of robotic manipulation is to pre-

cisely interact with the target object. This requires knowl-
edge about the pose of both the robot’s end-effector and of the
object that is supposed to be manipulated. Additionally, both
need to be represented in a common reference frame. Usually,
the end-effector pose is derived from forward kinematics and
given relative to the robot’s base frame. Whereas manipulation
targets are estimated in the camera frame through dedicated
perception algorithms, e.g., [1] or [2]. As the end-effector
pose and the object pose are obtained w.r.t. different reference
frames, connecting them forms an open kinematic chain: from
the object to the camera, via the robot’s base and to the end-
effector. To align them in a common reference frame, an ex-
act camera-to-robot-arm transformation is necessary, typically
performed via hand-eye calibration.

As robotic applications expand from purely accuracy-related
to a broader set of tasks, robots become more elastic and
lightweight [3]. As a consequence, the kinematic chain from
camera to the end-effector can be inaccurate with errors that
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Fig. 1. The humanoid robot neoDavid empties a dishwasher. In the bottom
image, the error of the forward kinematics (magenta) of the robotic arm can
be clearly seen, motivating a vision supported pose estimation (orange). The
vision input is our PK-ROKED algorithm, which provides the image location
and the associated covariance of selected keypoints (shown red and yellow in
the insert, bottom left) for a subsequent sensor fusion. Image: ©DLR.

are potentially dynamic, non-linear, or non-deterministic'. A
static hand-eye calibration is unable to capture these dynam-
ically changing errors which becomes a restricting perfor-
mance factor and eventually prevents accurate and precise
manipulation tasks. For instance, on the robot neoDavid,
which features several elastic parts or nonlinear kinematic

INon-deterministic in our context means that current real-time capable
forward kinematic algorithms are unable to compute the result for the
deformations accurately, given limited information on the load of the system.
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components, causing a significant offset between the true robot
arm pose and the pose obtained from kinematics, as it is
illustrated in Fig. 1.

Given the outlined challenge, the question is how to achieve
precise robotic manipulation with an inherently inaccurate
robot? This boils down to correcting the erroneous end-effector
pose estimate relative to the camera using online perception
methods. Previous approaches trying to solve this challenge
can broadly be divided into three categories marker-based
approaches (discussed in Section II-A, e.g., [4]), continuous
tracker-based approaches (see Section II-B, e.g., [5]) and
learning-based approaches (details in Section II-C, e. g., [6]).
However, each have disadvantages for the outlined situation.
The first, requires markers to be fully visible in a given image
to be able to establish a transformation. It furthermore requires
the markers to be attached on the arm, restricting the robot’s
design.

Tracking-based approaches follow their target over con-
secutive frames, assuming locally limited changes in the
target pose. Therefore, they require an initial pose estimate
as initialization. This initial estimation is usually obtained
through either of the other two previously mentioned cate-
gories. Alternatively, they are initialized by moving the robot
into pre-defined configurations, which restricts the workflow
of the robotic application. Tracking methods come at the
disadvantage of potentially losing the tracked object due to fast
motions, occlusions, or change of illumination conditions. In
case of tracking and losing a robot arm, the robot’s workflow
has to be interrupted to obtain a new initial guess for a re-
initialization.

Learning-based approaches circumvent the previous issues,
which makes them a promising research direction. Interest-
ingly though, the state-of-the-art mostly neglects other readily
available sensor information besides camera images, i.e., the
knowledge on the robot’s kinematics. Although, this knowl-
edge might be a potential error source, it is generally bounded
within a range. Therefore, it can be of valuable information
to indicate regions of interest or spatial relations, or act as a
plausibility check for the computer vision results.

To this end, we propose a two-step robot arm pose estima-
tion approach. First, we present our learning approach Prior
Knowledge Robot Keypoint Detection (PK-ROKED)?> which
outputs 2D keypoints on a robotic arm and its binary segmen-
tation mask. Our approach combines a single RGB image with
prior kinematic knowledge. As the forward kinematics have a
bounded error, we can leverage this valuable information for
an improvement in our keypoint prediction and eventually our
pose estimation. We do not rely on additional visual sensors
(e. g., depth cameras), which enhances the applicability across
various robotic systems and environments. In contrast to other
methods, PK-ROKED does not only detect the keypoints’
location in an image, but also predicts their corresponding
uncertainty distribution such that its results can be combined
with other information in downstream tasks. In this work, we
present the fully developed method of PK-ROKED, which is
based on our initial concept from [7]. As a second step, we

2 Available at: https://github.com/DLR-RM/PK-ROKED

correct the 6D robot arm pose using Bayesian filtering. There,
we fuse a probabilistic model of the forward kinematics [8] —
that is aware of the errors — with the output of the previous
step.

Concretely, in this work we contribute the following:

o Detection: We propose our learning-based PK-ROKED
approach, purely trained on synthetic data, which outputs
2D keypoint predictions and a binary robot arm segmen-
tation.

o Prior Knowledge: We demonstrate how to leverage
imperfect prior kinematic knowledge as a guideline for
potential keypoint locations.

o Probabilistic: We compute meaningful predictions with
corresponding uncertainties through leveraging Bayesian
learning. This is of significant importance as an associ-
ated uncertainty allows us to combine these results with
other sensor modalities for downstream tasks as e.g.,
fusion.

o Single Keypoint Fusion: We integrate our 2D keypoint
detection into a fusion algorithm to provide one holistic
framework to obtain estimated 6D robot poses, that
requires only one single detected keypoint.

o System Agnostic / Generalizibility: We demonstrate
the versatility and generalizability of our approach by
applying it to two different robotic systems with varying
complexity, in addition to a benchmark dataset. This is
accompanied by a successful quantitative evaluation of
the performance in the sense of accuracy, robustness, and
precision.

o Application: We further show the applicability of our
method on an advanced humanoid system in order to
initialize a visual tracker as a means of bypassing the
error-prone hand-eye transformation on an elastic robotic
system.

We apply our approach primarily on two different robotic
systems. Both have in common that an imprecise and inaccu-
rate transformation between the respective camera and the end-
effector restricts the system’s manipulation performance: the

Fig. 2. Schematic visualization of mechanical sources of errors and uncer-
tainties on the neoDavid system. Main errors stem from the elastic neck and
arm.



wheeled humanoid neoDavid [9] and the planetary exploration
prototype rover LRU2 [10]. Both robots were developed at
the Institute of Robotics and Mechatronics of the German
Aerospace Center (DLR). Furthermore, we use the publicly
available Panda-Orb dataset [6], to highlight our approach’s
competitive performance with the state-of-the-art in the topic
of general keypoint detection and pose estimation for robots
with accurate kinematics.

A. The Humanoid Robotic System: neoDavid

This system, as displayed in Fig. 1, has been designed
to be particularly robust against mechanical impacts, e.g.,
collisions with its environment during or due to manipula-
tion attempts. Additionally, an anthropomorphic appearance
as well as human-like dexterous skills were further high
priority design requirements. To this end, an elastic system
was implemented through Variable Stiffness Actuators [11],
which consist of springs and tendons. The main error sources
specifically stem from a) a continuum-elastic neck [12], b)
a non-linear wrist kinematic [13] and c) inaccurate measure-
ments in the finger joints [8], as indicated in Fig. 2 with red
error points. This leads to configuration dependent errors of
several centimeters that can reach up to 20 cm for corner-case
configurations. The resulting effect on the pose estimation is
visible in Fig. 1. Clearly, one observes the large discrepancy
between the orange skeleton, which represents our corrected
pose estimation, and the magenta colored one, which is derived
from forward kinematics with an additional neck estimation
based on [12]- we refer to the resulting estimation as forward
kinematics throughout this work if not stated otherwise.

B. The Rover System: LRU2

In case of the LRU2 (short for Lightweight Rover Unit
2, shown in Fig. 3a), weight constraints have been primarily
taken into account as it is a prototype robot for potential space
applications. It is a four-wheeled rover which has a Kinova
Jaco2 arm mounted at its rear and a set of cameras located on
a mast that allows for pan and tilt motions. The resulting key
error sources are highlighted as red error points in Fig. 3b.
The base plate of the robot’s arm causes the main errors in
the robot’s forward kinematics due to a non-linear and load-
dependent bending, especially when the arm is extended or
grasps heavy objects. Furthermore, the joints of the robot arm
contribute to the kinematic error, as they feature elasticities
and the sensor readings are noisy. The final contributing error
source is the base of the camera mast. Our own measurements
yield resulting errors in the range of up to 2.5 cm between the
assumed position of the end-effector as derived by forward
kinematics, and its actual position.

II. RELATED WORK

In this section, we present related work from three dif-
ferent categories: marker-based, continuous tracker-based and
learning-based approaches.

A. Marker-based Approaches

A classical approach to estimate the transformation between
any object and a camera is by detecting fiducial markers, e. g.,
AprilTags [14] or ArUco [15], that are attached to the object.
Placing these markers to a robot provides a relative 6D camera-
to-robot transformation. This transformation together with the
robot arm’s forward kinematics and given joint angles can be
used for the so-called hand-eye-calibration (e. g., the algorithm
of Strobl and Hirzinger [16]) providing the correct transfor-
mation between the camera and the robot’s base. Motivated by
challenges such as forward kinematics being imprecise or an
online re-calibration being required, Nissler et al. [4] introduce
an algorithm which builds and optimizes a map of relative
robot-to-marker transformations to derive the 6D camera-to-
robot transformation. In [17], the authors use markers on the
robot’s arm for frequent and fast re-calibration of multiple
sensors on the head of the humanoid robot. The marker-
based approaches tend to be robust, but come with multiple
downsides: attaching markers to a robot imposes constraints on
both the design, as the markers need to be physically mounted,
and also on the operation, as many marker types need to
be fully visible for detection. Furthermore, the success and
accuracy of the 6D pose estimation based on a single marker
detection tends to correlate with the marker size. Our method
differs to this category of approaches as it is markerless, and
we can detect keypoints even with partial occlusions.

B. Continuous Tracker-based Approaches

This set of approaches to robot arm pose estimation are
optimizing perceived data to match the closest point on a
robot model and can be deployed to track a given robot [18].
Therefore, these methods rely in addition to visual sensory
data - commonly depth data - on the forward kinematics and
a geometric robot arm description as inputs. To track a robot
arm, Schmidt eral. [19] model it as a kinematic chain of rigid
bodies that is iteratively optimized in an adjusted Extended
Kalman Filter (EKF) [20], while taking physical properties
into account to facilitate grasping objects. In [21], the authors
also model data input uncertainty in their approach to derive
more robust estimations, considering both errors in the depth
image but also in the joint encoders. Stoiber eral. [S] further
introduce weighted constraints during the optimization process
to combine the forward kinematics with estimates based on
depth and RGB modalities. Disadvantageous to this group of
methods is that good initialization values for the arm tracking
are required and affect the overall performance. Furthermore,
some of these approaches rely on depth data as a key modality
- a sensory input that might yield robust and valuable data
only in certain environments such as e.g., indoors. This is in
contrast to our approach, that relies on RGB images as visual
input and can detect as well as correct a pose in any robot
arm configuration.

C. Learning-based Approaches

Learning-based methods differ in whether the 6D pose
is directly derived or rather intermediary results are ob-
tained, which are required for pose estimation. To this end,
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Fig. 3. The LRU2 rover operating on the Volcano Mt. Etna: it is observing its arm motion using the head cameras (a), as the arm is subjected to several
kinematic errors which are highlighted in red in the schematics (b). The real position of the arm is detected in the camera image, using our PK-ROKED
method, providing us with the 2D keypoint position (red) and the associated covariances (yellow) (c).

Bohg et al. [22] introduce a Random Decision Forest classifier
on depth images with an intermediary segmentation step. In
order to obtain the actual joint positions for the robot arm
position estimation, votes from pixels, which end up in the leaf
nodes of the classifier, are clustered by relative joint offsets.
This method is improved by directly regressing joint angles in
their follow-up work [23].

Labbe eral. [24] approach pose estimation through iteratively
rendering and comparing the image of a robot arm with its
only input being an RGB image. The authors demonstrate
that incorporating joint values as additional knowledge to the
model improves the performance. Similarly, Ban etal. [25]
also estimate the full 6D pose of a robot arm just from a
single RGB image, without the joint parameters being known,
as they argue this information may not always be accessible.
Goswami etal. [26] derive the 6D pose in a similar setting
and also investigate the impact of self-supervised pre-training
on the performance.

To learn the hand-eye calibration, Chen eral. [27] apply
differential rendering based on multiple RGB images as an
input and optimize the joint parameters to estimate the 6D
pose. In their follow-up work [28], the approach is extended to
be training-free and thus robot arm agnostic by leveraging pre-
trained segmentation models as supervisors for their training
and prediction routine. A common approach of learning-based
methods, which preliminary output intermediary results for
robot arm pose estimation, is through first detecting keypoints
in an RGB image of a robot [6], [29]-[32]. The usual next
step is to forward these 2D locations with their corresponding
3D counterparts as obtained from forward kinematics to a
Perspective-n-Point (PnP) [33] algorithm to derive the final
6D pose estimation [6], [32]. Improvements of this method are
to optimize the set of keypoints [32], explicitly incorporating
the robot arm’s shape into the learning process [34], and back
propagating the PnP error [35], [36]. The various approaches
differ in whether they are purely trained on real-world data
[29], on mixed datasets consisting of synthetic and real-world
inputs [30], synthetic images only [6], [32], [37] or fine-tuned

on real images in a self-supervised fashion [25], [26], [31],
[35]. Tian etal [37], [38] further expand this concept and
formulate the problem statement as a tracking task with the
pose from the previous estimations being optionally available
to the current prediction. Our approach is similar to the
methods of Lee eral. [6] and Lu eral. [32] but differs in a)
incorporating prior knowledge from imperfect kinematics, b)
the probabilistic learning formulation and c) Bayesian fusion
instead of PnP being applied which comes at the advantage of
being able to correct a pose given only one detected keypoint.

III. METHOD

Our proposed approach, Prior Knowledge Robot Keypoint
Detection (PK-ROKED), consists primarily of two parts as
displayed in Fig. 4:

« First, is our probabilistic 2D keypoint detection network.

o Second, follows our 2D-6D Bayesian pose fusion model.

At the first step, the robot keypoint detection network learns
a representation of k predefined keypoints along a robot arm.
In our work, a keypoint is a 2D projection of a known 3D point
on the image plane. We take an RGB image I € Rw*/*3
with width w and height h as input. The second input is the
2D prior kinematic knowledge Py € R¥*2 of our k defined
keypoints which is discussed in detail in Section III-Al.

The output of our encoder-decoder model are &k belief
maps, one such map for each assumed keypoint location,
guided by the prior kinematic knowledge, and additionally a
segmentation mask of the robot arm (see Section III-A2 for
details). To compute uncertainties for our keypoint predictions
during inference, we perform ¢ stochastic forward passes for a
given input pair I and Py as outlined in Section III-A3. As an
post-processing step, outliers can be filtered out through the
predicted segmentation mask at inference time. The output
of this step are up to k£ 2D keypoints p; € R? with asso-
ciated covariances Zop ; € R2*2 and a segmentation mask
M c R¥*" where j represents a keypoint that is not removed
by our outlier rejection.
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Fig. 4. Overview on Prior Knowledge Robot Keypoint Detection (PK-ROKED). First, at our probabilistic 2D keypoint detection step, we feed a single RGB
image and prior kinematic knowledge to our encoder-decoder keypoint detection network. We output the mean coordinates and corresponding uncertainties
[p, Xop] for our keypoint predictions in 2D image space, which we post-process through filtering based on a predicted robot arm segmentation mask. Second,
we forward the obtained predictions to our 2D-6D pose fusion. At this step, we lift the 2D keypoints to 6D by fusing them with our probabilistic forward
kinematics using a Kalman filter, such that we obtain a new pose estimate X € SE(3).

At the second step, the 2D-6D fusion model, we lift the
previously detected 2D keypoints to full 6D pose estimates
that we represent as elements of the special Euclidean group
SE(3). To this end, this module takes the 2D detections and
corresponding uncertainties [pj, 3hp,;] as well as predictions
based on our probabilistic forward kinematics [8] as an input.
Using an Extended Kalman Filter (EKF), mapping from 2D
to 6D is achieved. The final output is the corrected 6D poses
X; € SE(3) for up to k detected keypoints together with
their covariance matrices Xy ; € R6%C. In the following, we
explain both steps in depth.

A. Probabilistic 2D Keypoint Detection

In this section, we present our deep learning approach to
detect the 2D image keypoints. Note, that an initial version of
this approach was introduced in [7], which we subsequently
further improved for higher performance and robustness.

1) Prior Kinematic Knowledge: Our method assumes that
we can derive the 2D image position of k£ keypoints for a
given robot arm. As motivated however, these estimations are
potentially subject to an error due to elastics in the kinematics
or a hand-eye de-calibration and thus are inaccurate with
a bounded error. Even though not perfectly precise, these
erroneous estimations still provide valuable knowledge for
a network by setting a focus area, in which the keypoints
are likely to be. Therefore, we create for each keypoint one
belief map, indicating the assumed location based on the
erroneous forward kinematics. We concatenate the resulting
k belief maps channel-wise to the image, such that the input

to our network yields w x h x (3 + k). The methodological
framework to concatenate the assumed belief maps with the
input image is characterized by its conceptual clarity and
soundness. Furthermore, we incorporate the prior knowledge
at almost no computational cost, as just minor changes in
the encoder network are necessary, as explained in III-A2.
In Fig. 5a and Fig. 5b we display both input components to
our keypoint detection network. For visualization purposes, we
depict the beliefs maps in one map in contrast to one map for
each keypoint, as in Fig. 5b and Fig. 5d.

During training of our keypoint detection network, it is im-
portant to incorporate the prior kinematic knowledge without
causing an overconfidence in this information. For this, we
perturb the ground truth keypoint locations with Gaussian
noise, such that: Py ; ~ N(Pg, ng, wain)- Pt 18 the
corresponding ground truth of each keypoint ¢, projected into
the camera frame. We denote Ppy ; as the 2D prior kinematic
knowledge coordinates, sampled from the ground truth with

2 .
Opk, rain 8 the variance.

The parameter o2 represents the expected error in the

k, train

prior kinematic knlz)wledge. Thus, higher values of agk’ train
represent less precise forward kinematics of robotic systems.
However, setting this parameter is only relevant during the
training phase as the prior knowledge during the inference is
already assumed to be imperfect and by this means perturbed.
Note, that we explicitly use this independent sampling method
for training to avoid the introduction of undesired correlations.
We therefore refrain from directly using the a-priori probability

distributions of the probabilistic forward kinematics [8] for
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Fig. 5. Data sample to train the Jaco2 arm with a mounted docking interface to the end-effector: synthetic monocular RGB image is the first input component
to our network (a) and perturbed prior kinematic knowledge as it is perceived by the network constitutes the second input component (b). The ground truth
segmentation map is the training reference (c) together with the corresponding ground truth map with the actual keypoint locations (d). For visualization
purpose, all keypoints in (b) and (d) are displayed in one map instead of one map per keypoint.

training and use this abstraction instead. To this end, we
ablate the choice of this parameter and its influence on the
performance of our method in Section V-D. Additionally to
the magnitude of error in our prior knowledge, we indicate
the region around a potential keypoint location by further
applying Gaussian smoothening on the disturbed positions
With Temooth, train- We associate a greater area around a keypoint
as being more uncertain about the respective prior knowledge,
whereas smaller areas analogously represent more certain
areas. This parameter is set during the training and inference of
our model. We ablate the importance of these two hyperparam-
eters in Section V-D. By training with varying parameters and
still benefiting from incorporating prior kinematic knowledge,
we show that explicitly setting these two parameters is not
required. Thus, exact knowledge about the uncertainty of a
given robotic system is not crucial but only the magnitude of
its errors. However, tuning these parameters yields the optimal
performance and thus is still preferred if possible.

2) Encoder-Decoder Network Architecture: The encoder of
our Convolutional Neural Network (CNN) is a ResNet50 [39]
feature extractor pre-trained on ImageNet [40]. We adjust this
backbone model to process 3 + k channels, which represent
the image combined with the prior kinematic knowledge belief
maps, by modifying the first convolution layer. The decoder
consists of four upsampling blocks to decompress the learned
representation. Each block comprises an upsampling operation
(scale factor of 2), convolution layer, ReLU activation and
another convolution (plus ReLU in the last two blocks only).
For each task, predicting the location of k keypoints and
segmenting the robot mask, we deploy one head of the same
outline. These heads are built by three convolution layers with
ReLU activations before and after the second layer.

To learn the keypoint locations, we train the network with
a pixel-wise Mean Squared Error loss, Ly ;, as:

L =Y = Yi|)%, (1)

which directly measures the difference between the predicted,
Y ,;, and ground truth, Y ;, belief maps of the ith sample in
the dataset. The ground truth labels are belief maps with a
pixel value of one at the actual keypoint location and zeros
elsewhere and smoothened around the keypoint edges with a
Gaussian distribution of ogmeom, & = 2 pixels, as visualized
in Fig. 5d. Consequently, non-visible keypoints, which do not

fall into the camera frustum, have a zero valued belief map.
To extract the actual keypoint coordinates, y;, from predicted
belief maps, ?, , we find pixel peaks in the belief maps, after
a Gaussian filtering as post-processing, similar to [6].

In order to learn the additional auxiliary task of segmenting
the robot arm mask, we apply a Binary Cross Entropy loss,
Lieg,i as:

ﬁseg,i = M’L : log(S(J/\Z—’L))+ (2)
+(1— M) -log(1 — S(M,))

with M i as the mask prediction, M ; the binary mask ground
truth and S(+) being the Sigmoid function. In Fig. 5¢c, we show
one ground truth binary mask, which we attempt to learn. The
intuition to incorporate segmentation as an additional task is
for the network to further gain a geometrical understanding
of the robot arm which consequently benefits the main task
of predicting keypoint locations. Eventually, the total loss for
one data sample i, £;, derives as:

Ei = Ekp,i + )\seg : ﬁseg,ia (3)

where A, defines a weighting factor. We train our keypoint
detection network purely on synthetic images, for which we
can trivially generate the required ground truth data.

3) Probabilistic Uncertainty Computation: One key con-
tribution of our approach, next to incorporating prior kine-
matic knowledge, is computing uncertainties for our keypoint
predictions as shown in [7]. To this end, we apply Bayesian
learning to account for epistemic and aleatoric uncertainty in
our approach, which are means to capture both the uncertainty
over the model parameters and in the input data [41].

To model the epistemic uncertainty, we apply Monte Carlo
dropout [42]. It approximates the intractable posterior distri-
bution p(W|D) over the network parameters, W, and a given
dataset, D, by minimizing the Kullback-Leibler divergence
between a proxy distribution, gg(W), and the actual posterior
distribution [41], [42]. It is further shown in [42] that this is
equivalent to applying dropout [43] to the weight parameters
during a network’s training as well as running the inference
with active dropout units. For an exact proof, we refer the
reader to [42] and [41]. In our context, we implement Monte
Carlo dropout by placing dropout units along the mid-layers
of our encoder-decoder network as suggested in [44]. For



Fig. 6. Pipeline to compute the image moments based on ¢ stochastic forward
passes. First, belief maps per keypoint are stacked and accumulated. Next, the
aggregated belief map is squeezed through a Sigmoid function and binarized
at a threshold of 0.6. The resulting bright spot is a potential keypoint location,
which we associate with the corresponding uncertainty of this detection. We
capture the size and orientation of such regions by computing the image
moments, which we can arrange in covariance matrices. The zoom in shows
a visualization of the potential keypoint location and additionally with the
resulting uncertainty ellipse computed based on the image moments.

inference, we perform ¢ stochastic forward passes — with active
dropout layers — where each pass can be interpreted as a Monte
Carlo sample from the posterior distribution [45]. For each
keypoint, the predictive mean y; of our keypoint coordinates
becomes:

1 t
E(y;) =D _ui &)
i=1

with y denoting here the already extracted coordinates of the
keypoints from the individual belief maps. This is our first
output of the 2D step with p; = E(yj).

We approximate the second order moment of the proba-
bility distribution, i.e., covariance, by applying the second
order central image moment to predicted output heatmaps.
In [7] we empirically demonstrated that modeling aleatoric
uncertainty through these second order central image moments
outperforms other such methods. The intuition and rationale
is that the network output — the predicted belief maps about
keypoint locations — indicates potential keypoints by higher
pixel values in those maps. The wider and greater an im-
age region is, the higher the uncertainty about the keypoint
location. Consequently, we attempt to capture the size and
orientation of these image regions about potential keypoints,
as approximated by an ellipse. This approach further allows us
to compute and directly measure the uncertainty in the belief
maps. To compute these second order central image moments,
we accumulate the belief maps of ¢ stochastic forward passes
per each keypoint, as shown in Fig. 6. Next, we process the
belief maps by applying the Sigmoid function and thresholding
the resulting map. Eventually, the image moments [46] are
calculated as:

* H20  H11
Sopi = X(y:) ~ 5
D7 ;) L‘u M()J ®)
with
L = E (u—a)"(v—0)"In(u,v), (6)

U,v

yielding the respective keypoints covariance matrix, which
is the second output of the 2D computation step. For the
image moment, the horizontal and vertical pixel coordinates
are denoted by v and v, % and v are the image’s centroid, and
In(-) is the pixel intensity value.

4) Segmentation based Outlier Rejection: For inference,
before we further fuse our 2D keypoint detections to derive
a 6D pose, we can post-process potential outlier keypoints
through filtering based on our estimated robot arm segmenta-
tion. Therefore, we reject those keypoints that are not within
our predicted segmentation mask. We process the singular
masks from ¢ forward passes by averaging and squeezing the
result through a Sigmoid function and eventually binarizing it
at a specific threshold. We note that this might be an useful
step as it comes at no additional costs but with a potential
practical upside.

B. From 2D to 6D: Robot Arm Pose Estimation

The outputs of our probabilistic keypoint detection network
are the two dimensional image coordinates together with the
associated uncertainty. However, most robotic applications
require spatial information, which motivates a further 6D
processing step. We present two ways to obtain the robot arm
pose using the PK-ROKED 2D information. The first approach
is used by the state-of-the-art, with several limitations. Due
to this, we subsequently present our own approach based on
sensor fusion, which is a further central contribution of this
paper.

1) Perspective-n-Point: The state-of-the-art mostly uses al-
gorithms for the well-known PnP problem to compute the
camera-to-robot pose from the detected keypoints, for example
[6] or [35]. For this, the 2D-to-3D correspondence of the
keypoints is combined with the known camera intrinsics to
estimate a camera-to-world transformation, where the world
frame is usually located at the robot’s base. There, the key-
points’ 3D positions w.r.t. the robot’s base are obtained from
the forward kinematics.

Algorithms for the PnP problem are well established. How-
ever, they require a minimum of at least 4 keypoints (3
keypoints for some special variants) to be visible for a viable
solution [33]. This restricts the camera perspectives from
where the robotic manipulator can be observed. Furthermore,
the method requires the robot manipulator to be a rigid body
with precise joint measurements — the prerequisite to obtain
the 3D coordinates in the world reference — a requirement that
is fulfilled by industrial robots but not by the type of robots
considered in this paper. Note that our method associates each
measurement point with a covariance, which enables us to use
probabilistic PnP methods like [47], a distinctive feature of our
approach compared to all other keypoint detection algorithms.

2) Sensor Fusion on Lie Groups: We present a single shot
sensor fusion, which relies strongly on the robot kinematics.
Our approach only requires one detected keypoint from the
network to obtain a valid pose, as it can leverage the kinematic
information and the fact that kinematic errors act highly
directional on the robot arm [8].

Our fusion approach is a single-step EKF-based state esti-
mator that requires both a prediction and a correction input.
We consider each keypoint individually, to assess the per-
keypoint-accuracy of PK-ROKED in this paper. For each
keypoint j, the keypoint’s state X; € SE(3) is the pose of its
reference frame w.r.t. the camera frame and has the associated
uncertainty Xy ; € R6*S.



The state prediction is obtained from our probabilistic
kinematics model [8] of the robot together with the current
joint readings, which provides the priors [;@»,2 %,4]- The
probabilistic robot kinematics allow encoding multiple errors
in kinematic chains in a probabilistic manner. The method
subsequently enables us to obtain a mean pose and the
corresponding uncertainty of arbitrary points on the robotic
structure — in our case the keypoints — by combining the con-
figuration dependent influence of all errors w.r.t. the requested
location. It is only necessary to define the magnitudes of the
kinematic errors and their locations on the robotic structure.
See [8] for details.

The detected 2D image coordinates of the PK-ROKED
keypoints accompanied by the corresponding noise estimates
constitute the measurements [p;, ¥,p ;] for the correction. The
sensor measurement model is

Zj :h(va’Uj)7 @)

where z; = p; € R? and v; ~ N(0,Zp ;). As the detected
keypoints are camera observations, we can use the well-known
pinhole-projection model to rewrite (7) as
o
zj= | v, 8
J [ RS ®

where, f; is the corresponding focal length, and ¢; denotes the
tth translational component of Xj.

The fusion is a one-step approach based on the correction
step of an EKF that considers the Lie-Group structure of
robotic poses. It is adapted from [48] to:

K=, H'(HE; H" + %), )
m = K(z; — h(X;,0)), (10)
X; = /'E'j Exp(m), (11)
y;=(0-KH)S . (12)

There, K € R%*2 denotes the Kalman gain, H € R2*6
represents the linearized observation matrix around X, me
RS is the innovation term that resides in the local tangent space
at X and is added to the prediction via the exponential map
Exp(+). Note that we use the vector representation of tangent
space elements and our notation of the capitalized exponential
map Exp implicitly contains the conversion of the vectors
into locally valid Lie Algebras before transforming them into
an element of the manifold SF(3). For details on Lie Groups
and the notation that we follow, we recommend [49].

IV. EVALUATION DATASETS

We test our algorithm in experiments on three datasets
from different robotic systems. In each case, a robotic arm
is observed by a camera system and the sensor data is
recorded for algorithmic evaluation. These arms are Franka
Emika’s Panda, LRU2’s Jaco2 and the right robotic arm of the
humanoid system neoDavid. For the latter two, we record the
datasets in our laboratory at DLR. The three systems differ in
complexity, both in terms of design and uncertainties in their
forward kinematics.

Our own recorded datasets have in common that they
provide real camera based observations of the robot arm for
inference, joint readings and the robot geometry for forward
kinematics, a ground truth reference, and synthetic camera
images for training.

A. Panda

To benchmark our approach, we evaluate on the publicly
available Panda-Orb dataset, which is provided by [6]. This
dataset contains 40k real-world images of the Franka Emika’s
Panda and additionally 100k synthetic images for training.
The real-world data is recorded with a Realsense camera,
placed at 27 different view points, while the arm performs the
same motion for each camera position. As the public dataset
contains several images with almost no motion between con-
secutive frames, we post-process the data to remove redundant
configurations, and we eventually derive a dataset consisting
of 32k images, which we evaluate on. This dataset is useful
for comparability between our approach and other algorithms,
as it is used for keypoint detection by e. g., [35] or [37]. To
circumvent the missing forward kinematics and hence prior
knowledge, which we require as an input, we utilize the ground
truth and apply the same perturbation as during training. We
argue that this dataset is the least complex and with the least
uncertainties associated.

B. LRU2 and Jaco2 Arm

Second, we record data on the Jaco2 arm mounted on the
back of the LRU2. Generally, the rover is supposed to operate
outdoors as shown in Fig. 3a. However, for our paper we
record the data inside our laboratories to leverage the available
VICON tracking system to obtain ground truth annotations.
This provides us with a scene that has a cluttered background
as shown in Fig. 15.

For the experiment, the arm moves to 29 different configu-
rations, waits at each for five seconds, and resumes the motion
to the next configuration, such that in total approximately 2k
images are collected. The LRU2 rover uses its Mako G319
camera together with a Schneider-Kreuznach Cinegon lens of
8 mm focal length to observe the motion of the robotic arm
in a distance of 1 —2 m. The camera provides an RGB image
with a resolution of 2064 x 1544.

We obtain the ground truth using the VICON tracking
system. Two tracking targets are mounted on the rover, one
on the pan-tilt camera head next to the RGB camera and one
at the end-effector. The LRU2 features a rotational-symmetric
docking interface as end-effector. Attaching a tracking target
there leaves us with one undefined degree of freedom for the
end-effector ground truth. To overcome this issue, we use a
specially designed VICON tracking target as shown in Fig. 15:
the infrared tracking markers are attached to the borders of a
small camera calibration plate [50] and the tool-adapter for
the end-effector is mounted on the same calibration plate.
This allows us to use well-established hand-eye calibration
algorithms [16] to obtain the camera to robot-head-tracking-
marker and the end-effector to end-effector-tracking-marker



transformations. Note that in this modified use of a hand-
eye calibration, the robot kinematics part is replaced by
the VICON-observed transformation between both tracking
targets.

The subsequent VICON tracking provides us with a
millimeter-accurate ground truth during the experiment. How-
ever, several loss-of-tracking events occur at specific robot
arm configurations, when the VICON markers are occluded
from the ceiling-mounted VICON-cameras. Those images
without valid ground truth are excluded from the evaluation.
Furthermore, our hand-eye calibration for the ground truth
marker to end-effector pose remained with a residual rotation
error of 2 degrees. This means that the positional ground truth
measurement error increases further away from the tracking
target, due to the lever that scales the rotational tracking
error at the end-effector. We therefore limit our evaluation
only to keypoints close to the end-effector, i.e., the last three
joints, to avoid a potentially degraded positional ground truth.
Furthermore, we deem this dataset and robot as of medium
complexity and uncertainty.

In addition to the lab recorded data, we qualitatively perform
tests on data collected on the volcano Mt. Etna during the
ARCHES moon analog mission [S1]. This is of great interest
as the kind of images captured are a harsh contrast to our
simulation and lab environment and are representative of the
operation-environment for the LRU2. There exists no ground
truth for this dataset so we are limited to visually inspect and
judge the performance.

C. neoDavid Dishwasher

As final experiment, we use the dishwasher handling
demonstration of our wheeled humanoid neoDavid as a real-
world application scenario. In this sequence, neoDavid opens
a dishwasher from which the robot subsequently removes a
bowl and places it on a table that is located close by. Recall
Fig. 1(top), where this scenario is shown.?

During the whole experiment, the robot’s camera observes
the arm, which allows our keypoint detection to run during
the entire sequence. The camera is an Azure Kinect with RGB
and depth capabilities, which the tracking algorithm takes both
as an input. We capture approximately 8k RGB images at
a resolution of 1280 x 720. For the 2D keypoint detection
evaluation, we measure our performance on a subset of 3k
images, as the motion between consecutive frames do not vary
noticeable. Whereas for the pose estimation evaluation, we
perform our pose estimation on all images.

Furthermore, we run the tracking algorithm of [5] during
the task to use it as ground truth. The tracker uses both
depth and color information of the robotic arm to track
it based on the known model of the robot. The algorithm
provides a precise estimation of the arm’s pose as long as
it is correctly initialized and no loss of tracking occurs. We
initialize the tracking manually and monitor its performance to
guarantee consistent and reliable tracking results. According
to [52], the tracker can achieve sub-millimeter accuracy on

3neoDavid emptying the dishwasher is also part of the video
https://www.youtube.com/watch?v=N5QTvjFdIPM

idealized synthetic benchmark data. Examining our real world
application, the tracker becomes more inaccurate due to model
inaccuracies and sensor noise. An evaluation on the tracking
data reveals stochastic errors mostly between 0.5 mm and
2mm in magnitude with limited outliers reaching 10 — 20 mm.

V. KEYPOINT DETECTION EVALUATION

In this section, we look into the 2D performance of the
keypoint detection and compare it to the state-of-the-art.

A. Implementation Details

For all three robotic systems, we train on synthetic images
only, (re-)sized 640 x 480 x 3, which we generate for the Jaco2
and neoDavid using BlenderProc [53] and with various domain
randomization techniques [54]. We refer the reader to the
Appendix A for a detailed list of the applied augmentations.
For both arms, we roughly render 25k RGB images including
segmentation maps. The Panda arm is trained on the publicly
available synthetic dataset [6], consisting of approx. 100k
images. For the latter dataset, we additionally generate binary
arm masks, similar to [35]. For Jaco2 and neoDavid we set
the Dropout probability to pgop = 0.1 and for the Panda to
Pdrop = 0.2 due to the different dataset sizes. The models for
Panda and Jaco?2 are trained for 50 epochs, a prior knowledge
training perturbation opk rain = 10 Pixels, Tsmooth, train = 2
pixels, and k = 7 keypoints represented by their joints. To
train our approach on the neoDavid system, we set the epochs
to 100 and opk, wrain = Osmooth, train = 7O pixels as this arm is
the most challenging due to the least precise prior knowledge.
Additionally, we select k¥ = 5 keypoints along the right
arm and hand. We refrain from selecting keypoints on the
finger tips as their predictions turned out to contain a high
amount of ambiguity. For all systems, we set A\soy = le-5 and
apply AdamW [55] with a learning rate of [r = 1.5e-4 and
perform training on Nvidia RTX 3090 GPUs. Furthermore, as
an effective batch size we choose 32 on Jaco2 and Panda,
whereas on neoDavid, we set it to 16. For all experiments, we
evaluate with t = 20 forward passes over the same inference
image. To filter outlier keypoints, we apply a binary threshold
for our segmentation masks of 0.5, please note, this is applied
for the 6D pose experiments, as in Section VII.

B. Metrics for 2D Evaluation

We assess the accuracy performance of our detections
on the percentage of correct keypoints (PCK) metric in 2D
image space [56]. PCK measures the Euclidean distance
between the ground truth and our predictions at various pixel
thresholds (px), which we refer to as PCK@px. Additionally,
we only take visible keypoints into account. Higher values
on this performance indicator are desirable. To evaluate our
uncertainty computations and thus their meaningfulness, we
apply the Precision metric. By checking whether a ground
truth keypoint lies within the predicted uncertainty ellipse
at varying scales, we can measure whether our detection is
overconfident (low PCK accuracy combined with low ellipse
multiples) or underconfident (high PCK accuracy and high



TABLE I
ACCURACY EVALUATION AS MEASURED BY PCK AT VARIOUS PIXEL THRESHOLDS. METHODS RELYING ON REAL-WORLD DATA ARE MARKED WITH
* THE VALUE MARKED WITH | REPRESENTS THE PERFORMANCE AT PCK @2.5 PIXELS.

Panda Jaco2 neoDavid
Method PCK (@px) 1 PCK (@px) 1 PCK (@px) 1
1 3 5 10 50 1 5 10 50 1 3 5 10 50
Ours 0.068 0.491 0.793 0944 0.992 0020 0.189 0428 0.786 098 0.009 0.117 0.277 0428 0.727
Ours w/ o seg. 0.05 0436 0.742 0922 0991 0.021 0.176 0425 0.768 0957 0.016 0.103 0212 032 0.569
Ours w/ o (PK +seg.) 0.05 0404 0.686 0.822 0.844 0.016 0.118 025 0427 066 0.012 0.152 0260 0418 0.610
DREAM w/ PK 0.057 0398 0.679 0.871 0969 0.012 0.087 0.244 0.569 0.828
DREAM 0.041 035 0.631 0.766 0.789 0.004 0.019 0.047 0.12 0.224
" CtRNet™ — — 7 T 7 0.096  0.635 0922~ 09% 10 oo oo T o oo oo o
RoboPEPP* [[1 o028t 0730 096 [
X 4 , C. 2D Keypoint Evaluation Results
= i Pt .
£ 100 X ---------- - We quantitatively evaluate our approach on three datasets,
2 757 J one for each robot arm model, w.r.t. the previously introduced
7 é@ e N metri.cs. The presented results are given withopt the key.p.o.int
/ | rT1 20 filtering step to better assess the actual prediction capabilities
M 2 e i 30 of our approach.
“15 -10 -5 9% & 10 15 50 1) Results on Panda: On this commonly used dataset,
Width [px] we benchmark against our trained version of DREAM [6]

Fig. 7. Visualization of our uncertainty metric Precision, which illustrates our
assessment with a toy problem. We check at which threshold s of a predicted
keypoint, pp.q, the actual ground truth, py,, is enclosed.

ellipse scale multiples). As displayed in the toy problem in
Fig. 7, the dummy keypoint prediction, p,,.q, and its corre-
sponding uncertainty ellipse, at varying multiples, enclose the
actual keypoint, p, only at a scale multiple of 30. Hence, the
prediction would be regarded as True Positive (TP), otherwise
False Positive (FP). Consequently, we compute for a given
scale multiple threshold s:

TP

PrecisionQs = TP+ FP

(13)
To check whether the actual keypoint is entailed by our
uncertainty ellipse, we calculate:

2 _ b gt, transf-x b gt, transf-y
(05a)2 " (0.5b)2
1, ifr2<1

’ . 15)
0, otherwise

r

(14)
1(r?) =

With Py rangr denoting the ground truth keypoint relative to
the ellipse center p,.q and transformed into this coordi-
nate system. We perform the transformation with Gy =
arctan(zmﬂ), which expresses the uncertainty ellipse’s ori-
entation 'tnflexough Umax, the corresponding eigenvector of the
eigenvalue g max Of the detection’s covariance matrix. Fur-
thermore, @ = 254/ Acig, max 18 the ellipse’s width along the
major axis, b = 25,/ Acig, min the height of the ellipse along
the minor axis and Aeig, max» Aeig, min are the eigenvalues of the
covariance matrix. The indicator function 1(+), in Equation 15,
allows counting 7P and FP uncertainty detections at a certain
scale multiplier.

and additionally we also compare against CtRNet [35] and
RoboPEPP [26]. In Table I, we show that our approach
achieves the highest performance when incorporating both
segmentation and prior kinematic knowledge. This outper-
forms models using only prior kinematic knowledge or neither
segmentation nor prior knowledge. Hence, we are already able
to attest a positive effect of our prior knowledge approach on
the detection accuracy. We further confirm this hypothesis as
we outperform DREAM but can also improve this method,
when we train it with our prior kinematic knowledge strategy.
To this end, we slightly modify the architecture of DREAM
to allow taking the additional prior knowledge belief maps as
an input. By this we also highlight the generalizability and
versatility of our approach, enabled by our simple and lean
design choice of incorporating prior kinematic knowledge such
that even existing approaches can benefit.

Benchmarked against CtRNet, we observe this method
achieves higher accuracy results. In comparison to this ap-
proach, however, PK-ROKED trains only on synthetic data,
trains shorter (for only 50 vs. 1000 epochs), does not require
self-supervised learning on the real-world test dataset and ad-
ditionally computes uncertainties for the predicted keypoints.
We argue this performance gap can be attributed to the self-
supervised fine-tuning on real-world data, for which CtRNet
requires precise forward kinematics - an assumption we deem
not to be valid for our robots.* However, to provide a compar-
ison nevertheless, we ablate the performance possibilities of
our approach in Section V-D, where we fine-tune on real-world
data. Additionally, we observe that our synthetically trained
model already outperforms RoboPEPP (trained on real-world
data, self-supervised), which however assumes no knowledge
about joint values at test time. The shown value at PCK@3
pixels for RoboPEPP actually represents their performance at

4We were not able to run CtRNet with the synthetic pre-training for a direct
comparison with PK-ROKED and also were not able to train the approach
for a new robot (e. g., our Jaco2), given the currently published code.
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Fig. 8. Evaluation of our uncertainty computations as measured by Precision. On all three datasets, we observe our approach with binary segmentation as
an additional task is best performing. This is indicated by higher Precision values being reached at smaller scale multiplies, i.e., the actual keypoints are
captured by the computed uncertainty ellipse. On the Panda and Jaco2 dataset, we deem our computed uncertainties as balanced due to the resemblance to
the Normal distribution. Whereas on the neoDavid dataset, only uncertainties computed based on our approach with both, segmentation and prior knowledge,
are to some extent able to be considered well-balanced between over- and underconfident.

their lowest reported PCK of 2.5, for which we achieve a score
of 0.378 - also outperforming their approach.

On the Precision metric, as shown in Fig. 8a, we observe
only a minor improvement on a nevertheless seemingly well-
calibrated uncertainty computation. We base this on the similar
- with only minor differences - trajectories of the respective
Precision evaluations in comparison to the Normal distri-
bution, which is regarded as balanced between under- and
overconfident.

The qualitative results in Fig. 9, at the first column, verify
our competitive results on this dataset. We observe mainly
detections within a 2.5 pixel radius (green markers) to the
ground truth (blue markers). In the few cases that are not
within this range, we see that our predictions (red markers) and
the respective uncertainty ellipse (yellow) capture the actual
keypoints.

2) Results on Jaco2: On the medium complex and uncer-
tain Jaco2 dataset (Table I and Fig. 8b), we observe that a)
our approach outperforms the DREAM method significantly
and b) by incorporating the segmentation task, we enhance
our performance on both metrics. Additionally, the impact of
incorporating prior kinematic knowledge into a keypoint net-
work becomes evident. This holds for both, the benchmarked
approach DREAM and our method without prior knowledge
and segmentation.

Furthermore, we are able to enhance our computed uncer-
tainty predictions, which are deemed well calibrated due to
the close resemblance of the Normal distribution. We interpret
these findings twofold: first, the general benefit of prior
kinematic knowledge for robot arm systems with uncertain
pose estimations is apparent and second, we consider the
segmentation as beneficiary to incorporate geometric reasoning
as the accuracy as well as the Precision improves.

We confirm these findings qualitatively by looking at Fig. 9,
at the second column. For visualization purpose, we show in
these images all detected keypoints even though the quantita-
tive evaluation takes into account only the last three from the
end-effector. Our approach predicts keypoints (red markers)
in immediate proximity to the actual ground truths (blue

markers), which our uncertainty ellipse furthermore captures.

In addition to the lab recorded data, we show qualitative
results on the ARCHES data in the third column of Fig. 9. We
observe that our approach detects keypoints seemingly on the
correct position even in this challenging environment. This is
of special importance as it confirms that our approach provides
reasonable results w.r.t. the LRU2’s operation environment.

3) Results on neoDavid: The arm and corresponding
dataset are deemed the most challenging due to the high
uncertainty in the prior kinematic knowledge and the complex
mechanical system. On this dataset, we observe the greatest
impact of our additional segmentation task. Without this,
we actually have a worse accuracy performance compared
to without prior knowledge, as displayed in Table 1. We
argue the underlying uncertainty incorporated through the prior
kinematic knowledge is of such magnitude that it becomes
challenging for the network to learn when and to what extent
to rely on this prior knowledge. However, combined with
the segmentation we again outperform on the higher PCK
levels. Similarly, our approach that includes the segmentation
achieves the best performance on the Precision benchmark and
is the only one that comes close to the reference Normal distri-
bution. We deduce this improvement can again be deemed as
confirming our motivation to apply segmentation as enhancing
the geometrical reasoning of our approach.

Looking at the last column of Fig. 9, we observe that our
approach is detecting three (red markers) out of the four visible
keypoints (blue markers) in the last image. It appears that
this keypoint is especially challenging as there is also no
computed uncertainty on the middle image. This occurs if
the values in the belief maps of a keypoint are so low that
in our processing step to compute the uncertainty ellipse the
values are below the binarization threshold. Low pixel values
in the belief maps indicate a low likelihood of a keypoint being
at a certain pixel. Hence, we hypothesize that our network
is uncertain about this keypoint. Nevertheless, our network
detects the other keypoints consistently and their uncertainty
ellipses capture the actual keypoints.

We interpret the results, observed on all three datasets



Fig. 9. Qualitative evaluation on all three robots. PK-ROKED detections are red markers, blue ones show the ground truth keypoint location. Green markers
indicate keypoint detections with a 2.5 pixel radius to the ground truth. The yellow ellipse is our computed uncertainty. In the first column, we see our
predictions on the Panda dataset. Most of our predictions are within the 2.5 radius and if that is not the case, our network captures the ground truth keypoints
with the uncertainty ellipse - indicating well calibrated Precision. In the next columns, we show results on the lab as well as the more challenging ARCHES
data for the Jaco2. Note that we are depicting all detected keypoints here, even though quantitative evaluation considers only the last three from the end-effector.
For the lab data, we observe our predictions in very close proximity to the ground truth. Additionally, we capture the ground truth again with our uncertainty
ellipse. For the ARCHES data, we immediately recognize the harsh contrast to the lab data. On the arm we can see challenging reflections and an overall
stark contrast with the sky. Nevertheless, our network predicts seemingly correct keypoints with reasonable uncertainties. Eventually, we see results on the
complex neoDavid dataset. In the last of those images, we see that one of the keypoints is not detected.

and on both metrics, as confirming our stated hypothesis, of
incorporating prior kinematic knowledge and segmentation to
introduce a better geometrical understanding to our network.
This becomes especially observable the more uncertainties are
inherent in a system, such as it is the case on the neoDavid
arm. However, this system also highlights the limitations of
our 2D keypoint detection approach as gains are marginal
compared to the performance improvements realized on the
other two datasets. Eventually, we conclude that the greatest
effect of our prior kinematic approach is in case of reliable
prior kinematic sources and a medium system complexity.

D. Ablation Studies

We conduct three ablation studies to evaluate our 2D
keypoint detection. To this end, we run experiments to evaluate
the impact of different prior knowledge perturbation strengths
during training, Gain, pk» and inference, Ojnger, pk» ON OUT base
network, i.e., our approach without the additional segmentation
task, in order to have isolated findings without any potential
confounder variable. Furthermore, we investigate whether our
standard approach can recognize and measure uncertainty in
our prior kinematic knowledge for variable ogmooth, train and
Otrain, pk- Both these experiments are conducted on the Jaco2

dataset. As a third ablation study, we examine the potential
performance gain when we fine-tune our approach on real-
world data of the Panda arm.

1) Impact of Prior Knowledge Perturbation Strength:
In order to assess the impact of our choice of our prior
knowledge perturbation opy, rain, We train our base approach
with varying pixel strengths, ranging from one to 50 pixels.
We hypothesize, the network learns to unconditionally trust
the seen prior knowledge during training, in the case of a
perturbation of just one pixel as this provides close to perfect
and correct information. However, during inference, when the
prior knowledge is not correct, this model does not achieve
high accuracy detections beyond a PCK level of 20 pixels, as
shown in Fig. 10a. Furthermore, we confirm our intuition of
our prior kinematic knowledge approach as the more disturbed
and thus imperfect it becomes, the less performance increase
is attested. This empirical observation goes so far as the prior
kinematic knowledge can even decrease accuracy performance
compared to without any prior knowledge, as in Fig. 10a
and Table 1. We argue, that in such cases, the impact of our
provided prior knowledge on the network is confusion rather
than setting a region of interest to search for keypoints.

As stated, our approach to incorporate this prior kinematic
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Fig. 10. Evaluation of our base 2D keypoint detection approach with varying
opk during training and inference on our real-world Jaco2 data. The experi-
ments with different oy train reveal deteriorating accuracy with a increasing
prior knowledge perturbation regime during training (a). Analogously, we
observe performance decreases in case the prior knowledge perturbation
during testing differs significantly from the training one (b).

knowledge is to provide an area to focus the keypoint predic-
tion on and hence the network is supposed to balance this
information with additionally learned clues from the RGB
image I. Thus, we analyze the performance of PK-ROKED
during inference with varying inference perturbations when
the network is trained with the best performing and our
standard perturbation on the Jaco2 of op wain = 10 pixels.
The additional perturbation, opy, infer» iS applied on top of
the already imperfect prior knowledge to make it even more
imprecise, if not stated otherwise. We observe in Fig. 10b
that our approach is balancing prior kinematic knowledge with
additional learned information as hypothesized. We derive this
by observing the only slight decrease in performance when
the prior kinematic knowledge during inference is additionally
disturbed with oy infer = 10 pixels. This gap would have been
greater in case the network unconditionally trusts the prior

kinematic knowledge — which it apparently does not. This is
furthermore supported by the still robust accuracy in case of
an even further and stronger inference perturbation.

Based on these two experiments, we conclude our approach
of incorporating prior kinematic knowledge is balanced in
such that it indicates a potential region of keypoints without
our approach becoming purely reliant on this information
modality. We observe that it seems not necessary to exactly set
the parameter oy, yain as the performance was still reasonable
with other choices of the hyperparameter. Importantly, this
parameter does not perfectly match op infer as we achieve
good accuracy results even with further perturbations.

2) Measuring Prior Knowledge Uncertainty: Motivated by
these results, we investigate whether our approach is capable
to recognize to what extent it should rely on the provided
prior kinematic knowledge. We hypothesize that our approach
should be able to predict better keypoints with a well calibrated
uncertainty in case of good prior knowledge, where the input
is indicated to be more certain. In such a scenario, the network
should be able to put more trust in this information and hence
yield better results. To run such an experiment, we train a
network with varying opk, ain as well as different ogmooth, trains
each randomly chosen for a given training sample. To clarify,
Opk, wrain indicates how strong a given sample’s prior knowledge
is perturbed. In contrast to that oo, rain T€presents the area
around a believed keypoint. Therefore, a wider area indicates
less certainty and a narrow region is interpreted with higher
certainty of the keypoint being at that location. For this ex-
periment, we sample opk, wrain € {57 10, 30} and Ogmooth, train €
{2, 5,15} and train for 100 epochs as the network takes longer
to convergence on the Jaco2. We evaluate the resulting model
with two different variations of prior knowledge: first, the
ground truth is the ideal prior knowledge, i.e., without any
further perturbations applied s.t. opk infer = 0 = gt. Second,
we sample the prior knowledge from the imprecise forward
kinematics together with an additional standard deviation of
Opk, infer = S0 pixels. For each of those two variants, we run
the inference three times with varying ogmeoth, thus modify
the indicated input uncertainty of the prior knowledge. Higher
Osmooth Values result in greater keypoint areas of the input
belief maps and thus indicate a greater uncertainty about the
exact keypoint location compared to lower values. Along this
line of reasoning, the network should predict less accurate
keypoints in case of highly inaccurate prior knowledge which
we falsely indicate to be certain. As shown in Fig. 11a, we
observe the hypothesized performance. In case we feed our
network perfect prior knowledge and indicate that this is
certain, we observe the best performance, as depicted with
Osmooth € {2,5}. The accuracy decreases with increasing
Osmooth = 15, as we expected. This is further supported by
the reasonably well calibrated Precision scores achieved in
Fig. 11b, that closely reassembles a normal distribution.

In case of very strong additional perturbation on the prior
kinematic knowledge, we observe the worst performance when
we falsely indicate to our network that we are certain about it,
i.e. opk, infer = 30 together with oypneon = 2 and thus resulting
in a strongly overconfident network. However, the performance
clearly improves when we instead indicate uncertainty about
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Fig. 11. Accuracy and Precision evaluation of our approach on the Jaco2 dataset. The model is trained and evaluated with varying oy train and smooth, train-
Thereby, opk, infer = gt indicates the ground truth which is fed to the network as ideal prior knowledge. Whereas opy infer = 30 implies an additional
perturbation on the already imperfect prior knowledge obtained from the forward kinematics. We observe the best performance on both metrics when the
model is run with perfect prior knowledge which we indicate to be certain about, i.e., op, infer = gt and Tgmooth € {2, 5}. The performance is worst in case
of strong prior knowledge perturbation which is falsely believed to be certain. This experiment showcases that our approach is capable of recognizing the
associated uncertainty of the received prior knowledge and to what extent it can rely on it for its keypoint predictions.

the strong perturbed prior knowledge. Hence, we deduce our
approach can recognize whether and to what extent it should
rely on the prior kinematic knowledge.

Furthermore, we highlight that when we evaluate this kind of
model with our standard prior knowledge, which is already
imperfect and a medium uncertainty of ognoon = 9, We
surpass the accuracy of approaches without prior knowledge,
as reported in Table II. Thus, we also conclude that knowing
the exact parameters for opk; train a1d Tsmooth, train 1 NOL required
in order to benefit from the performance gains of incorporating
prior kinematic knowledge.

TABLE 11
ACCURACY OF PK-ROKED TRAINED WITH VARYING OsmootH, TRAIN AND
OPpK, TRAIN -
Jaco2
Method PCK (@px) T
1 3 5 10 50
Ours w/ o PK + seg.  0.016 0.118 025 0427 0.66
Our w/ var. hyper. 0.016 0.147 0336 0.678 0.877

3) Fine-tuning on Real-world Data: Furthermore, we an-
alyze the upper limit of our approach in case it is further
fine-tuned on a non-overlapping subset of the real-world
test dataset. We argue that this real-world fine-tuning of
PK-ROKED has direct practical application, in cases where
our approach is used to initialize a tracker as shown in
Section VIII. Thereby, we collect data and gather pseudo
labels through deploying the tracking as ground truth. We
successfully applied and tested this routine on neoDavid and
boosted the accuracy from 0.277 to 0.48 at the PCK@5
pixels through fine-tuning on additional 800 images for 40
epochs. Similarly, we report such a fine-tuning experiment

on a non-overlapping subset of the real-world Panda dataset.
We conduct two such runs, one trained on ca. 160 images,
which represents only 0.05% of the dataset and another model
fine-tuned on 1% of a non-overlapping subset. Both train for
additional 20 epochs, and we decrease the learning rate to
lr = 1.5e-5. In Table III, we observe strong performance
improvements across all PCK levels. We also notice that the
fine-tuned models achieve the highest accuracy on the lower
PCK values and are on par with CtRNet on the higher ones,
or even surpass it, as reported in Table I. Thus, incorporating
real-world data opens up as a promising future research path.

TABLE III
PCK FINE-TUNING EVALUATION ON THE Panda DATASET.

Fine-tuning on Panda

Method PCK (@px) 1

1 3 5 10 50
Ours (synth.)  0.068 0491 0.793 0944 0.992
Ours (0.05%) 0.195 0.706 0.879 0.972 0.995
Ours (1%) 0.416 0.857 0.939 0978 0.989

VI. EVALUATING THE PNP-POSE ON Panda

This section presents results on the 6D pose estimation on
the Panda dataset based on the standard PnP algorithm using
predicted 2D keypoints, analogously to DREAM. We empha-
size that deriving the 6D pose by means of a PnP algorithm
comes with disadvantages, as outlined in Section III-B and
thus is not meant to be our primary method to estimate the
6D robot pose. Nevertheless, it is well suited to compare PK-
ROKED with the state-of-the-art. This evaluation allows us to
compare our approach to additional methods such as CtRNet-
X [36] and Real-Time Holistic Robot Pose Estimation with
Unknown States [26], which we refer to as HPE.



A. Metric for 6D PnP-Evaluation

The 6D pose on the Panda dataset is commonly evaluated
by the average distance (ADD) [6]. The ADD measures the ac-
curacy between 3D points and their transformed counterparts,
mapped by the derived 6D camera-to-robot pose. Analogously
to the PCK metric, the percentage of ADD is evaluated at
various thresholds. This is reported as the area-under-the-
curve (AUC) and the mean error. For the former, higher values
show better accuracy and for the latter one, smaller average
errors are desirable.

TABLE IV
6D ACCURACY EVALUATION AS MEASURED BY ADD AND THE
CORRESPONDING AUC AND MEAN (M).

Panda

Method Mean (m) | AUC 1T
Ours (synth.) 0.034 75.46
Ours (0.05%) 0.017 88.12
Ours (1%) 0.015 89.29
DREAM 0.025 69.1

CtRNet 0.021 85.29
CtRNet-X 0.014 86.23
RoboPEPP [-] 77.5

HPE 0.025 75.20

B. 6D Pose Evaluation Results

In Table IV, we observe that our only synthetically trained
model already performs on par with the current state-of-the-
art and is just outperformed by CtRNet and its follow-up
work. This is analogously to our findings on the 2D evaluation
and is also likely to be due to the real-world self-supervised
training deployed by the CtRNet approaches. However, we
achieve comparable results to HPE and RoboPEPP, which both
also perform self-supervised training on real-world data. Their
main respective difference to the CtRNet approaches is that the
latter assumes to have access to the joint values, whereas the
former two approaches estimate these as well. Additionally,
in case of our fine-tuned version, we even achieve the best
performance on the AUC with just a slightly inferior mean
error to CtRNet-X.

VII. PROBABILISTIC POSE ESTIMATION EVALUATION

So far, we have evaluated the performance of the standalone
keypoint detection as it provides the two-dimensional keypoint
positions on the camera image. However, in the end most
robotic applications require spatial information as input, either
as 3D points or 6D poses. To achieve this, we use the 2D
information on the keypoint location and combine it with the
6D forward kinematics to obtain a valid and corrected 6D
pose of that keypoint. Note that — for comparability of the
experiment results — we treat each keypoint independently in
this experiment section. Furthermore, we only use a single
shot fusion approach for comparability, as continuous pose
estimation methods can be very system specific and their
approaches highly depend on factors like measurement rate of
the sensors or observability of kinematic errors. More thorough
fusion approaches such as continuous pose estimation and
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Fig. 12. Evaluation of our fusion results on the neoDavid data, while the robot
empties a dishwasher. The pose estimation of our approach is highlighted
with the orange skeleton. Whereas, the forward kinematics are shown in
magenta. As one observes, our approach is able to significantly improve the
pose estimation.

rigid body estimations using multiple keypoints is out of scope
and left to future work.

Recall that our fusion approach is detailed in Section III-B2.
The 2D output of PK-ROKED is our input for the correction
step and the probabilistic kinematics [8] are the input for the
prediction step.

We evaluate the fusion considering two experiments on
our two different robotic datasets — neoDavid and LRU2
with its Jaco2 arm. We compare the resulting keypoint poses
to the ground truth. Similarly, we compare the uncorrected
robot kinematics to the ground truth and subsequently show
the improvement in pose estimation of our fused keypoint
detection compared to the pure forward kinematics.

A. Metric for Pose Evaluation

Both experiments feature external ground truth measures for
the true keypoint pose. Our evaluation metric is therefore the
positional error between a measured pose and the ground truth
pose.
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Fig. 13. Experiments on neoDavid: we evaluate our pose estimation while neoDavid empties the dishwasher, using our M3T tracking as ground truth. The
accuracy of the pose estimation is shown in all spatial dimensions and in terms of Euclidean norm as difference between the obtained pose and the ground

truth pose.

B. Pose Fusion Results on neoDavid

First, we evaluate the pose estimation of the keypoints on
our robot neoDavid.

To enable the sensor fusion, the probabilistic kinematics
need to be parameterized. We assign the highest uncertainty to
the neck joint of neoDavid, with a standard deviation of 10 mm
and 0.1rad, for each translational and rotational component,
respectively. The arm joints feature a joint-error along the
principal rotation axis, which we model as 0.01rad and the
nonlinear wrist has an assigned uncertainty of 0.1 rad standard
deviation in both roll and pitch. Finally, each finger element
would feature a high uncertainty as well, especially as these
joint values are only measured indirectly, but as we only
consider keypoints at the finger base, this is irrelevant for the
current evaluation.

We run PK-ROKED and obtain the 2D position and asso-
ciated covariance for four selected keypoints that are placed
on or close to the robotic hand: one is located at the end
of the palm; two are at the root of thumb and little finger,
respectively; and one is located on the robot’s forearm. Fig-
ure 1(bottom left) shows a PK-ROKED detection of the first
three listed keypoints. Note that we train the keypoint detection
model on a fifth keypoint, the right elbow, for our real-world
applications and daily use. However, we neglect this keypoint
in the 6D evaluation as it is barely visible in the recorded
dataset.

The fusion step is used to compute the improved keypoint
pose which is then used to correct the overall robot kinematics.
The resulting — corrected — skeleton is shown in Fig. 1(bottom
right). We consider the robot’s forward kinematics as refer-
ence. Note that neoDavid’s kinematics offer peculiarities: we
already employ neck-pose-correction algorithms [12] to get
an improved relative transformation between the head and the
robot’s torso, compared to the nominal forward kinematics
which approximates the neck as two revolute joints. The
kinematics with the neck-pose-correction are referred to as
kinematics-and-neck and are visualized in Fig. 1(bottom) and
Fig. 12 along our fusion results. We use both kinematics
sources in our evaluation.

For the accuracy evaluation, we compare both kinematics

sources and our fusion with the ground truth and apply the
position error as evaluation metric. The results are shown in
Fig. 13, where the directional errors are w.r.t. the camera
frame. Generally, our pose fusion of PK-ROKED and the
probabilistic kinematics provides the best accuracy for the
robot arm pose. The kinematics including the neck correction
outperform the simplified kinematics.

Notably, the error of the kinematics mostly affects the y
direction. This is due to the fact that the neck error is locally
constant. During the dishwasher demo, the neck only moves
slightly around an initial position that favors the errors in one
direction over the other.

Regarding the individual keypoints, the fusion results for
palm and thumb generally have very good results with few
outliers. Contrary to that, the pose estimation using the little
finger keypoint performs well in many cases, but has both a
significant higher outlier rate than the previously mentioned
keypoints and multiple errors in the 5cm regime. The 5cm
error is explained by an observed detection ambiguity between
the base of the index finger and the base of the little finger,
causing the network to confuse both and assigning a false
positive little finger detection to the index finger on multiple
occasions. We also attribute the higher outlier rate for the little
finger to the same ambiguity, as the network confuses these
two finger keypoints and their location on the hand. Finally,
the forearm performs reasonably well, however it has to be
stated that this keypoint is rarely visible, thus providing only
limited data points for comparison.

C. Pose Fusion Results on LRU2 with Jaco2

Finally, we evaluate our algorithm on the LRU2 system.
We model the kinematic errors similar to the neoDavid case.
The bending of the base-plate is modeled with an uncertainty
of [0.02,0.1,0.001)rad standard deviation, with the pitch
experiencing the highest uncertainty due to the gravity induced
bending of the plate. Each joint gets assigned 0.02rad and the
pan-tilt camera mount is set to 0.01rad for the pan and tilt
directions.

The resulting pose estimate is visualized in Fig. 15 for two
example configurations. There, we illustrate the robot skeleton
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Fig. 14. The accuracy of the pose estimation in terms of Euclidean norm,
using the VICON tracking as ground truth.

from the forward kinematics (magenta), which clearly shows
an offset to the true arm pose, however less severe as compared
to the kinematics errors at the neoDavid robot. The figure also
shows the skeleton of the corrected robot arm pose, for which
we use the fusion result of the end-effector keypoint and draw
the skeleton using this result as relative reference.

We illustrate the accuracy of our pose estimation in Fig. 14.
We limit the evaluation only to the static phases of the
experiment: even though the camera images and the VICON
ground truth are accurately synchronized in time, it turns out
that there is a non-constant time offset between the joint
readings and all other data. Our focus on static configurations
allows us to rule out an incorrect computation of the residual
estimation error due to a timing-mismatch.

The evaluation shows that our pose estimation allows cor-
recting the robot’s forward kinematics. However, it is still
susceptible to noise and outliers as the upper quartile of the
pose error lies in the range of the kinematics error. This
motivates future work: either combine the measurements of
several keypoints using the rigid body assumption and/or
combine the observed keypoints over multiple images in a
smoothing approach for outlier reduction.

VIII. ROBOTIC APPLICATION: TRACKER INITIALIZATION
AND TRACKER MONITORING

As outlined in Section I, one approach to mitigate inac-
curate pose estimates from forward kinematics are continuous
tracking methods, such as M3T [5]. These approaches however
require an initialization of the tracking object. On neoDavid,
the arm tracking is currently initialized by starting the tracker
in a pre-defined arm configuration. The obvious disadvantage
is the static initialization itself, as it requires returning to
the start configuration each time the tracker is lost. Hence,
a dynamic initialization is desired which in turn would allow
for online re-initialization and thus a smoother recovery from
lost tracking situations.

,"')‘“ i

r 9o

)94

Fig. 15. The Jaco2 experiments: a calibration plate with integrated VICON
markers is attached to the end-effector of the arm. The arm moves to
multiple configurations while being observed by the LRU2’s camera. The pose
estimation result is shown as the orange skeleton compared to the inaccurate
forward kinematics (magenta skeleton). Note that we convert the RGB images
to grayscale for the visualization purposes.

To this end, we configure the M3T tracking pipeline im-
plemented on neoDavid to take as initialization input the
pose output of our approach, i.e., the fused 6D poses. We
run this experiment on various images and poses from our
neoDavid dataset. Additionally, we qualitatively compare our
initialization of the tracker with those solely based on the
forward kinematics.

We judge the initialization poses, represented as pink arm
overlays, by how much they visually match with the actual
arm in a given image. As we observe in Fig. 16, we obtain
significantly better initialization poses in case we feed our
poses to the tracker versus the forward kinematics only. This
has a significant impact on the following tracking success and
therefore the continuous and consecutive pose estimation. A
tracker, such as M3T, is able to refine local pose correction
through optimization — as long as they are of just minor
magnitude. It is not, however, able to counter-act cases when
the initialization is too much off from the actual target, as in
case of the experiment with the forward kinematics only.

To conclude, we deem the experiment to initialize a tracker
with our PK-ROKED approach as successful. Thereby, it high-
lights further the versatility and applicability of our approach.
Eventually, this demonstrates a promising robotics application
with real-world impact as it allows initializing a tracker from
various positions. Hence, it increases the potential application
space as well as autonomy of a robotic system, as demon-
strated on the DLR’s neoDavid. In the future we envision
a parallel execution of the tracker and PK-ROKED, where
the former module provides fast and accurate tracking results
and the latter continuously supervises for a potential loss-of-
tracking and re-initialization of the tracker if necessary.

IX. CONCLUSION

In this work, we developed the Prior Knowledge Robot
Keypoint Detection (PK-ROKED) to correct the arm pose of
robotic systems that suffer from inaccurate forward kinemat-
ics. To this end, our method first detects 2D keypoints on
a robot arm given a single RGB image and imperfect prior
kinematic knowledge. The latter is derived from the inaccurate
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Fig. 16. Qualitative comparison to initialize the M3T arm tracker through the pose based on our approach versus the forward kinematics only. The pink
overlay is the initialized position based on which the tracker would start refining. The upper row presents the initialization as obtained through the forward
kinematics. In the lower row we see the initialization with poses derived by our approach. Red markers indicate in this image the input poses to the M3T

tracker.

forward kinematics, which is imprecise but stays within a
bounded error. Second, based on the resulting 2D predictions
and their corresponding uncertainties, we lift the 2D keypoints
to actual 6D poses by fusing them with the inaccurate forward
kinematics, requiring only one successfully detected keypoint.

We demonstrated the performance of PK-ROKED on two
different robots in addition to a benchmark dataset. By re-
porting quantitative results on these datasets, we showed the
advantage of our approach as we outperform other 2D keypoint
detections methods. Thereby, we confirm our hypothesis that
prior kinematic knowledge improves keypoint detections, as
shown by the measured accuracy gains. The generalizibility
of our approach is highlighted twofold: first, by incorporating
our prior kinematic knowledge concept into another method
DREAM, and thus improving the respective performance and
second, by deploying our approach on the three different
systems, which vary in complexity.

In addition to the 2D performance, we evaluated our perfor-
mance on the ability to correct an erroneous pose estimation.
Therefore, we deployed the approach on our systems and
reported pose estimation improvements on both. An important
aspect for this is our contribution of computing uncertainties
for our keypoint predictions. By this, we were able to apply
a probabilistic fusion framework, which works with only one
keypoint detection - a distinction to other methods.

However, we also encountered some limitations of our
approach, which we are eager to tackle and improve upon
in the future. A limiting factor for our performance gain is the

quality of aforementioned prior knowledge. As demonstrated
on the neoDavid robot and further ablated on the Jaco2, the
more uncertain and hence off the prior kinematic becomes, the
less valuable it is regarded. We conclude that the performance
gains especially w.r.t. accuracy are dependent on the prior
knowledge quality and to what extent our approximation of
modeling it through Gaussian perturbations is reflecting reality.
Thus, we plan to improve the modeling of the prior kinematic
knowledge by learning its actual distribution for a given robot
and corresponding kinematic. As future work to improve the
fusion step, we consider advancing it towards a continuous
pose estimation method that uses multiple keypoints.

Furthermore, we demonstrated the applicability of our
method by integrating it with a continuous tracker on a real
robotic system. Here, we showed that with our approach the
initialization of a robot arm tracking — one of the main pain
points of those approaches — can be overcome.

We sincerely hope, this work sparks some imitation in the
robotic computer vision community to consider incorporating
such valuable and available information as forward kinematics
— even if not completely accurate.
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APPENDIX
DATA AUGMENTATIONS

Table V shows the applied data augmentations during the
training phase of the keypoint detection network. The listed
techniques are used on all three synthetic datasets as augmen-
tations to further bridge the difference between synthetic and
real-world images of the respective robot arms.

TABLE V
DATA AUGMENTATIONS FOR INPUT IMAGES. GAUSSIAN NOISE IS APPLIED
TO EACH INPUT IMAGE. ADDITIONALLY, ONE AUGMENTATION FROM EACH
”ONE OF” BLOCK IS CHOSEN, ACCORDING TO THE PROBABILITY VALUES.

Augmentation Probability
Gaussian noise p=1.0
RGB channel shuffle p=0.23
One of Random brightness contrast p=20.31
RGB shift p=0.27
Hue, saturation and value p=0.19
One of Horizontal flip p=20.28
Vertical flip p=20.28
Coarse dropout p=0.44




