Padalkar, Abhishek und Stulp, Freek und Neumann, Gerhard und Silverio, Joao (2025) Towards Safe and Efficient Learning in the Wild: Guiding RL With Constrained Uncertainty-Aware Movement Primitives. IEEE Robotics and Automation Letters, 10 (7), Seiten 6880-6887. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LRA.2025.3566599. ISSN 2377-3766.
![]() |
PDF
- Postprintversion (akzeptierte Manuskriptversion)
4MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10982105
Kurzfassung
Guided Reinforcement Learning (RL) presents an effective approach for robots to acquire skills efficiently, directly in real-world environments. Recent works suggest that incorporating hard constraints into RL can expedite the learning of manipulation tasks, enhance safety, and reduce the complexity of the reward func- tion. In parallel, learning from demonstration (LfD) using move- ment primitives is a well-established method for initializing RL policies. In this letter, we propose a constrained, uncertainty-aware movement primitive representation that leverages both demonstra- tions and hard constraints to guide RL. By incorporating hard con- straints, our approach aims to facilitate safer and sample-efficient learning, as the robot need not violate these constraints during the learning process. At the same time, demonstrations are employed to offer a baseline policy that supports exploration. Our method im- proves state-of-the-art techniques by introducing a projector that enables state-dependent noise derived from demonstrations while ensuring that the constraints are respected throughout training. Collectively, these elements contribute to safe and efficient learning alongside streamlined reward function design. We validate our framework through an insertion task involving a torque-controlled, 7-DoF robotic manipulator.
elib-URL des Eintrags: | https://elib.dlr.de/216474/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Towards Safe and Efficient Learning in the Wild: Guiding RL With Constrained Uncertainty-Aware Movement Primitives | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2 Mai 2025 | ||||||||||||||||||||
Erschienen in: | IEEE Robotics and Automation Letters | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 10 | ||||||||||||||||||||
DOI: | 10.1109/LRA.2025.3566599 | ||||||||||||||||||||
Seitenbereich: | Seiten 6880-6887 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 2377-3766 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Safe reinforcement learning, learning from demonstrations (LfD), constrained learning, guided reinforcement learning | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Synergieprojekt ASPIRO, R - Autonome, lernende Roboter [RO] | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||||||
Hinterlegt von: | Padalkar, Abhishek | ||||||||||||||||||||
Hinterlegt am: | 18 Sep 2025 22:07 | ||||||||||||||||||||
Letzte Änderung: | 19 Sep 2025 22:18 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags