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Towards safe and efficient learning in the wild: guiding RL with

constrained uncertainty-aware movement primitives
Abhishek Padalkar1, Freek Stulp1, Gerhard Neumann2, João Silvério1

Abstract—Guided Reinforcement Learning (RL) presents an
effective approach for robots to acquire skills efficiently, directly
in real-world environments. Recent works suggest that incorpo-
rating hard constraints into RL can expedite the learning of
manipulation tasks, enhance safety, and reduce the complexity
of the reward function. In parallel, learning from demonstration
(LfD) using movement primitives is a well-established method
for initializing RL policies. In this paper, we propose a con-
strained, uncertainty-aware movement primitive representation
that leverages both demonstrations and hard constraints to guide
RL. By incorporating hard constraints, our approach aims to
facilitate safer and sample-efficient learning, as the robot need
not violate these constraints during the learning process. At
the same time, demonstrations are employed to offer a baseline
policy that supports exploration. Our method improves state-of-
the-art techniques by introducing a projector that enables state-
dependent noise derived from demonstrations while ensuring that
the constraints are respected throughout training. Collectively,
these elements contribute to safe and efficient learning alongside
streamlined reward function design. We validate our framework
through an insertion task involving a torque-controlled, 7-DoF
robotic manipulator.

Index Terms – Safe Reinforcement Learning, Learning from
Demonstrations, Constrained Learning, Guided Reinforcement
Learning

I. INTRODUCTION

Learning from Demonstration (LfD) [1] has proven to be
an effective method for motion generation, enabling a robot to
imitate and adapt demonstrated motions. Various frameworks
have been developed, including Dynamic Movement Primi-
tives (DMPs) [2], Probabilistic Movement Primitives (ProMPs)
[3], and Kernelized Movement Primitives (KMPs) [4], which
effectively address common real-world challenges such as
generalizing to new situations and avoiding obstacles. How-
ever, these methods often struggle in dynamic environments
where demonstrations inadequately represent task dynamics,
particularly during in-contact tasks. In such tasks, the policy
often receives out-of-distribution states as an input, resulting in
failures. Collaborative robots aim to mitigate these challenges
by employing impedance control to remain compliant while in
contact, thus reacting to the inaccuracies caused by kinematics
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Fig. 1. BNC connector assembly task from the NIST assembly benchmark
[5]. A1 to A4 show the male and female BNC connectors. B1 to B4 show a
human demonstrating the task by hand-guiding the DLR SARA robot [6]. An
LfD trajectory learned from the demonstrations was not able to solve the task
as it does not model the contact dynamics and uncertainties in the kinematics.

and dynamics. However, learning a robust LfD policy that can
adapt to such uncertainties remains a significant challenge.

Reinforcement Learning (RL) addresses this challenge by
training a reactive policy that considers the current state of
both the robot and its environment. However, the necessity
of a large number of trials, coupled with concerns about
robot safety, presents a significant challenge for RL to be
directly applicable on real robots. Transfer learning attempts
to overcome this by learning a policy in a simulation and then
applying it to the robot, yet it is still limited by the sim-to-real
gap [7]. Learning skills directly on real robots eliminates the
need for meticulously modelling tasks in simulation. In [8] we
propose a guided RL approach enabling tasks to be learned
directly on the real robot, where available task knowledge,
represented as constraints, facilitates effective policy search
(see Section II for an overview of related work). Despite the
promising results, the manual modeling of inductive biases
(e.g. constraints, exploration strategies) can be challenging,
particularly in complex tasks that involve contacts.

To address the above-mentioned challenges, we propose to
learn a nominal policy together with a state-dependent explo-
ration strategy from human demonstrations. Specifically, we
introduce a novel movement primitive representation, Linearly
Constrained Null-Space Kernelized Movement Primitives (LC-
NS-KMP), where a non-parametric LfD framework generates
motions while adhering to linear inequality constraints on
the robot state. Simultaneously, LC-NS-KMP provides a null-
space projector that allows actions generated by RL policies
to modify the mean behavior of the LfD policy. The derived
projector modifies the mean behavior of the LfD policy in
accordance with the variance and correlations in the demon-
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strations. Consequently, the same null-space action will result
in larger/smaller deviations in states where the variance in
the demonstrations is higher/lower. This uncertainty-awareness
facilitates the design of state-dependent exploration noise. We
leverage this property to enable state-based exploration in RL
while ensuring safety by enforcing state space constraints. The
main contribution of this paper is thus a new RL framework,
Kernelized Guided Reinforcement Learning (KGRL), described
in Section III, which leverages the properties of LC-NS-KMP
to facilitate RL in the wild.

To fully demonstrate the capabilities of KGRL, we selected
the BNC connector assembly task from the NIST assembly
task board 1 [5], illustrated in Fig. 1. This task presents
significant challenges, as it requires precise insertion of the
connector while maintaining compliance to prevent damage to
the components. Following the insertion, a complex series of
translations and rotations are necessary to lock the connector
in position. Our method is well-suited for such tasks because it
1) allows for the specification of constraints that ensure safe
operation during state space exploration, and 2) guarantees
uncertainty-aware, state-dependent exploration for reinforce-
ment learning, which helps avoid unnecessary exploration in
the low-variance regions of the motion (Section IV).

II. RELATED WORK

Learning from Demonstration is a widely used approach
for learning robot motions from humans. Ravichandar et al.
[1] present a comprehensive survey on recent advances in
LfD. One of the main paradigms in LfD is behavior cloning
(BC) which uses supervised learning frameworks such as Dy-
namic Motion Primitives (DMPs) [2], Probabilistic Movement
Primitives (ProMPs) [3] and Kernelized Movement Primitives
(KMPs) [4] to teach new skills to robots with only a few
demonstrations. BC often generates brittle policies that fail
when the robot encounters situations outside the distribution of
the demonstrations [9]. Another important paradigm is Inverse
Reinforcement Learning (IRL) where a reward function is
extracted from human demonstrations to guide RL. Extracting
reward functions in IRL is also subject to the coverage of
optimal behaviors in the used demonstrations [10], [11].

The limitations of LfD, particularly in tasks involving
contacts, can be mitigated by the use of RL in combination
with demonstrations, to obtain more robust policies [12] than
with LfD alone. This has been done in four main ways: (1)
by populating the replay buffer of off-policy RL algorithms
with demonstrations and associated reward [13], [14], (2)
by extracting a reward function from demonstrations and
augmenting it with task specific rewards for further gener-
alization while simultaneously learning an RL policy (GAIL
[11], AIRL [15]), (3) by using a behavior cloning policy
to regularize the RL policy during learning [16], [17], and
(4) by learning a residual RL policy to support an LfD one
[18], [19]. Populating the replay buffer with demonstrations
provides initial experience from the demonstrations, but the
RL policy is initialized randomly and trained from scratch
which is an inefficient use of the demonstrations. Learning
a reward function and an RL policy simultaneously from the
demonstrations can result in unstable learning [9].

Work presented in [20] leverages trajectories produced by
a trajectory-optimization-based controller to initialize an RL
policy and then learns robust behaviors with RL in simulation
using domain randomization. They propose to learn adaptive
task phase dynamics to facilitate learning policies which are
robust against failures. Work presented in [19] proposes mul-
tiple strategies for correcting a DMP policy with RL residual
policy for solving contact-rich tasks. None of the above
methods extract exploration strategies from demonstrations
or account for state-dependent noise, instead often assuming
isotropic exploration noise. Moreover, in these approaches,
the exploration is unconstrained, hence potentially unsafe
exploratory actions can cause damage to the environment as
well as the robot. Both of these shortcomings are addressed
in our proposed solution.

A holistic review of works on safe reinforcement learning
is presented in [21]. Approaches such as [22] and [23] present
an optimization layer to optimize the actions generated by the
RL policy based on safety constraints. Others, e.g. [24], [25]
use Gaussian Processes for conducting safe exploration in the
proximity of already safe states. Our approach has similarities
with these works as we propose to introduce modifications in
the trajectories based on variance in the already safe demon-
strations. Additionally, we provide a mechanism to enforce
hard constraints on the state of the robot.

More recently, Chi et al. [26] introduced diffusion policies
for LfD which leverage a conditional denoising diffusion
process for generating robot motions. An overview of diffusion
policies for RL is provided in [27]. Zheng et al. intro-
duce diffusion-based, safe RL [28] by defining a feasibility-
dependent objective, which depends on an offline dataset
to predefine a safe region. To the best of our knowledge,
current diffusion-based methods in robot manipulation lack
inherent constraint enforcement mechanisms and uncertainty-
aware exploration.

Kernelized Movement Primitives (KMPs) are an LfD frame-
work originally formulated by Huang et al. [4]. Silvério and
Huang [29] extended this framework such that modulations
in the trajectories are possible with a null-space modifier,
without re-parameterizing the whole KMP. Later, Huang and
Caldwell [30] introduced a way of enforcing linear constraints
on the predicted trajectories without re-parameterization. In
our work, we build on top of the above-mentioned works by
deriving a unified framework for enforcing linear inequality
constraints and modifying trajectories with a null-space action.
We leverage the resulting framework in combination with RL,
to efficiently and safely learn in-contact tasks bootstrapped by
human demonstrations.

III. METHODOLOGY

A. Background

a) Kernelized movement primitives (KMP): Huang
et al. [4] presented an approach to learn probabilis-
tic trajectories from demonstrations called Kernelized
Movement Primitives (KMP). Consider M demonstrations
D = {{sn,m,ηn,m}Nn=1}Mm=1 where N is the length of a tra-
jectory comprised of input s ∈ RI and corresponding output
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η ∈ RO. A probabilistic policy can be learned from these
demonstrations using Gaussian Mixture Model (GMM) such
that, P(s,η) ∼

∑C
c=1 pcN (µc,Σc), where, pc, µc,and Σc are

the prior probability, mean and variance of the cth Gaussian.
We can employ Gaussian Mixture Regression (GMR) to obtain
a reference trajectory Tr = {µ̂n, Σ̂n}Nn=1 from the learned
GMM, where µ̂n and Σ̂n are means and covariance matrices
computed at each new input. At the same time, a parametric
trajectory can also be learned from the same demonstrations,

η(s)= Θ(s)⊤w, Θ(s)=


φ(s) 0 . . . 0
0 φ(s) . . . 0
...

...
. . .

...
0 . . . 0 φ(s)

, (1)

where the matrix Θ ∈ RBO×O, weight vector w ∈ RBO,
with φ(s) being a B-dimensional basis function. Consider
weights w are drawn from N (µw,Σw), hence we can write
η(s) ∼ N (Θ(s)⊤µw,Θ(s)⊤ΣwΘ(s)). The original formu-
lation [4] proposes to minimize the KL-divergence between
the above-mentioned two Gaussian distributions, represented
by Tr and N (Θ(s)⊤µw,Θ(s)⊤ΣwΘ(s)), leading to a mean
minimization subproblem with cost function

argmin
µw

N∑
n=1

1

2
(Θ⊤(sn)µw − µ̂n)

⊤Σ̂−1
n (Θ⊤(sn)µw − µ̂n)

+
1

2
λµ⊤

wµw.

(2)
The solution of (2) leads to the formula-
tion of KMPs. The prediction of a KMP is
given by E(η(s)) = k∗(K + λΣ)−1µ, where
µ = [µ̂⊤

1 , µ̂
⊤
2 , . . . , µ̂

⊤
N ]⊤, Σ = blockdiag(Σ̂1, Σ̂2, . . . , Σ̂N ),

k∗ and K are kernel matrices obtained after applying kernel
treatment to the basis functions, which will be discussed in
detail in Section III-B, and λ is a regularization term. We
here only focus on the mean minimization subproblem as our
goal is to extract a policy for the robot to track.

b) Linearly-constrained KMP: Huang and Caldwell [30]
formulated a linearly constrained imitation learning framework
which incorporates linear inequality constraints on the state
of the robot, and applied the same method to minimize the
KL-divergence between two distributions as [4], to obtain a
constrained mean minimization subproblem

argmin
µw

N∑
n=1

1

2
(Θ⊤(sn)µw − µ̂n)

⊤Σ̂−1
n (Θ⊤(sn)µw − µ̂n)

+
1

2
λµ⊤

wµw

s.t. g⊤
n,fη(sn) ≥ cn,f , ∀f ∈ {1, 2, . . . , F},

∀n ∈ {1, 2, . . . , N},
(3)

where F is the number of constraints imposed on the output
and gn,f and cn,f parameterize the constraint hyperplanes.
The mean prediction of LC-KMP is given by

E(η(s∗)) = k∗(K + λΣ)−1µ+ k∗(K + λΣ)−1ΣḠα, (4)

where,

Gn = [gn,1 gn,2 gn,3 . . . gn,F ], ∀n ∈ {1, 2, 3, . . . , N},
Ḡ = blockdiag(G1, G2, G3, . . . , GN ),

α = [α1,1, α1,2, . . . , α1,F , . . . , αN,1, . . . , αN,F ].

The Lagrange multiplier vector α is obtained by solving a
convex optimization problem [30]. Note that the prediction
given by Eq. (4) respects the constraints defined in Eq. (3).

B. LC-NS-KMP formulation

In this paper, we derive a unified method which combines
null-space modifier for KMPs proposed by [29] and linear
constraints proposed by [30]. Combining the desirable proper-
ties of these methods, our framework allows RL to modulate
a mean trajectory predicted by KMPs adhering to linear
constraints and covariance in the demonstrations. It helps RL
conduct an effective search by modulating the exploration
noise in accordance with the variance and constraints.

We start from the same constrained mean optimization
problem as Eq. (3), and introduce an additional cost term
1
2β(µw − µ̂w)

⊤(µw − µ̂w) which results in a soft null
space projector that modifies the mean trajectory (see [29]
for details), to obtain,

argmin
µw

N∑
n=1

1

2
(Θ⊤(sn)µw − µ̂n)

⊤Σ̂−1(Θ⊤(sn)µw − µ̂n)

+
1

2
λµ⊤

wµw +
1

2
β(µw − µ̂w)

⊤(µw − µ̂w),

s.t. g⊤
n,fη(sn) ≥ cn,f , ∀f ∈ {1, 2, . . . , F},

∀n ∈ {1, 2, . . . , N}.
(5)

The term 1
2λµ

⊤
wµw regularizes the solution and the cost term

1
2β(µw − µ̂w)

⊤(µw − µ̂w) inspired from [29] keeps the
solution close to a desired one µ̂w. Similarly to [30], we
propose to solve Eq. (3) by introducing Lagrange multipliers
αn,f ≥ 0, with the Lagrange function

L(µw, α) =

N∑
n=1

1

2
(Θ⊤(sn)µw − µ̂n)

⊤Σ̂−1
n (Θ⊤(sn)µw

− µ̂n) +
1

2
λµ⊤

wµw +
1

2
β(µw − µ̂w)

⊤(µw − µ̂w)

−
N∑

n=1

F∑
f=1

αn,f (g⊤
n,fΘ(sn)

⊤µw − cn,f ),

(6)
which can be re-written using matrix notation as

L(µw,α) =
1

2
(Φ⊤µw − µ)⊤Σ−1(Φ⊤µw − µ)

+
1

2
λµ⊤

wµw +
1

2
β(µw − µ̂w)

⊤(µw − µ̂w)

−α⊤Ḡ⊤Φ⊤µw −α⊤C̄,

(7)

where Φ = [Θ(s1) Θ(s2) . . . Θ(sN )],
and C̄ = [C⊤

1 C⊤
2 . . . C⊤

N ]⊤ with
Cn = [cn,1 cn,2 . . . cn,F ]

⊤, ∀n ∈ {1, 2, . . . , N}. By
setting the derivative ∂L(µw,α)

∂µw
= 0, we obtain
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(ΦΣ−1Φ⊤ + γI)µ∗
w = (ΦΣ−1µ+ βµ̂w +ΦḠα) resulting

in

µ∗
w = (ΦΣ−1Φ⊤ + γI)−1(ΦΣ−1µ+ βµ̂w +ΦḠα), (8)

= ΦAµ+ΦAΣḠα+
β

γ
(I −ΦAΦ⊤)µ̂w, (9)

where, A = (Φ⊤Φ+ γΣ)−1 and γ = λ+ β. Equation (8) is
further simplified into Eq. (9) using the Woodbury identity1.
By substituting µ∗

w in Eq. (7) and Eq. (1), we get

L̃(α) = α⊤Ḡ⊤ΣAAAΣḠα+ (2µ⊤AAAΣḠ

− βµ̂⊤
wΦAΣḠ+ C̄⊤)α+ const, (10)

and

E(η(s∗)) = Θ(s∗)µ∗
w

= Θ(s∗)(ΦAµ+ΦAΣḠα+
β

γ
(I −ΦAΦ⊤)µ̂w),

(11)

respectively, where A = − 1
2Φ

⊤ΦΣ−1Φ⊤Φ− γ
2Φ

⊤Φ.
For a desired output ξ = Φ̂⊤µ̂w, we can estimate the

optimal weight vector µ̂w given the target trajectory ξ, using
the right pseudo-inverse of Φ̂⊤, similarly to [29], hence,
µ̂w = Φ̂(Φ̂⊤Φ̂)−1ξ. By further replacing µ̂w in Eq. (10)
and Eq. (11), we obtain, respectively,

L̃(α) = α⊤Ḡ⊤ΣAAAΣḠα+ (2µ⊤AAAΣḠ

− βξ⊤(Φ̂⊤Φ̂)−1Φ̂⊤ΦAΣḠ+ C̄⊤)α+ const,
(12)

and
E(η(s∗)) = Θ(s∗)(ΦAµ+ΦAΣḠα

+
β

γ
(I −ΦAΦ⊤)Φ̂(Φ̂⊤Φ̂)−1ξ).

(13)

Similarly to [4], we propose to kernelize the above equation
using the kernel treatment, i.e. the inner product of basis func-
tions φ(si) and φ(sj) defined as φ(si)

⊤φ(sj) = k(si, sj),
where k(., .) is a kernel function. With the kernel treatment,
we can write

L̃(α) = α⊤Ḡ⊤ΣAAAΣḠα+ (2µ⊤AAAΣḠ

− βξ⊤K−1K̂AΣḠ+ C̄⊤)α+ const, (14)

E(η(s∗)) = k∗Aµ+ k∗AΣḠα+
β

γ
(k̂∗ − k∗AK̂)K−1ξ,

(15)
with A = (K+λΣ)−1, and A = − 1

2KΣ−1K− γ
2K, where,

K =

k(s1, s1) . . . k(s1, sN )
...

. . .
...

k(sN , s1) . . . k(sN , sN ))

 ,

k∗ = [k(s∗, s1), . . . ,k(s
∗, sN )], k(si, sj) = k(si, sj)I,

K = Φ̂⊤Φ̂, K̂ = Φ⊤Φ̂, k̂ = Φ(s∗)⊤Φ̂.

We substitute B1 = Ḡ⊤ΣAAAΣḠ, and
B2 = 2µ⊤AAAΣḠ+ βξ⊤K−1K̂(−A)ΣḠ+ C̄⊤

in Eq. (14), which results in a quadratic function

1Woodbury identity: if P ≻ 0 and R ≻ 0, (P−1 +B⊤R−1B)−1B⊤R−1 =
PB⊤(BPB⊤ + R)−1.

L̃(α) = α⊤B1α+ B2α. Thus, we can tackle the problem of
finding optimal Lagrange multipliers α by solving

argmax
α

α⊤B1α+ B2α,

s.t. α ≥ 0.
(16)

Since AAA = (AAA)⊤ ≼ 0 and −A = −A⊤ ≼ 0, Eq. (16)
defines a quadratic program with linear inequality constraints.
After solving for α, Eq. (15) enables constrained predictions
incorporating modulations from ξ.
C. Properties of LC-NS-KMP

We evaluated the properties of LC-NS-KMP using
synthetically-generated 2D time trajectories, shown in Fig. 2
(A1), alongside the learned GMM. We chose the squared
exponential kernel k(ti, tj) = exp(−l(ti − tj)

2), with hyper-
parameter l = 2. We use GMR for generating the reference
trajectories and covariances, and the same kernel in all our
experiments, including those in Section IV. The KMP input
is s = t and the 2D outcome is η = [x y]⊤.

Figure 2 (A2) illustrates the impact of various null-space
actions ξ applied at t = 3.2s on the resultant trajecto-
ries {ηi}Ni=1. Despite the local modulation in the trajectory,
smoothness is preserved while respecting the linear inequality
constraints defined in LC-NS-KMP, similar to the approach
of [30]. Finally, Fig. 2 (A3) shows trajectories generated
using Eq. (15), where ξ is randomly sampled from a normal
distribution at each time step. ξ modulates the trajectory in
accordance with the variance in the demonstrations and hence
it demonstrates the uncertainty-aware exploration through null-
space actions. The modulated trajectory also satisfies the
constraints despite the noise amplitude. This property paves
the way for safe exploration in RL.
D. Kernelized Guided RL (KGRL)

We propose to use null-space actions ξ obtained from an RL
policy π(ξ|q), to introduce modulations in the LfD trajectory
learned from the demonstrations2. LC-KMP [30] in Eq. (4)
predicts a trajectory which respects the linear inequality con-
straints defined in Eq. (3). Our proposed method LC-NS-KMP
in Eq. (15) allows modifications in the prediction using null-
space action ξ, whose magnitude depends on the variance in
the demonstrations, while respecting the constraints in Eq. (5).
This important property allows us to conduct efficient and safe
RL search using null-space actions. Particularly, we obtain
null-space actions from a RL policy π(ξ|q) modifying the
prediction for further refinement as

E(η(s∗)) = k∗Aµ+ k∗AΣḠα+
β

γ
(k̂∗ − k∗AK̂)π(ξ|q).

(17)
Our complete approach, termed Kernelized Guided Rein-

forcement Learning (KGRL), is summarized in Algorithm 1.

IV. EVALUATION

A. Experiments in simulation
We evaluate the performance of our proposed framework

against two baselines: 1) a residual RL policy and 2) a

2We use q to represent the RL agent state, to distinguish it from the KMP
input s.
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A1 A2 A3

Fig. 2. LC-NS-KMP properties: (A1) shows the demonstrations and the learned GMM; (A2) shows the modulations due to different ξ applied at t = 3.2s,
adhering to the constraints; (A3) shows the effect of randomly sampled ξ. In (A2) and (A3), the modifications introduced by ξ respect the linear inequality
constraints, which are shown by dashed red rectangle.

Algorithm 1 Kernelized Guided RL (KGRL)
1: Collect demonstrations D ← {{sn,m,ηn,m}Nn=1}Mm=1

2: Set λ, β and define k(., .)
3: Set horizon h
4: Model joint probability distribution P(s,η)
5: Define set of constraints O = {{g⊤

n,f , cn,f}Nn=1}Ff=1

6: Initialize a RL policy π(ξ|q) and policy parameters
7: loop for each n = 1, . . . , N
8: In current state sn, retrieve the reference trajectory

distribution Tr ← {µ̂i, Σ̂i}n+h
i=n

9: Choose constraints for Tr from O
10: Sample RL action ξ from RL policy π
11: Compute α with Eq. (16)
12: Compute E(η(sn)) with Eq. (17)
13: Apply E(η(sn)) to robot
14: Compute reward
15: Update RL policy π
16: end loop

Fig. 3. Simulated 2D environment where the robot navigates through a
narrow passage to reach the goal. A trajectory for navigation can be learned
from demonstration. Then an RL policy learns to avoid the obstacle in the
path of the robot. The robot must not cross into the restricted zone.

safe residual RL policy using predictive safety filters [21].
Both of these residual policies learn to adapt the mean LfD
trajectory. For this evaluation, we developed a simulation
involving a robot that navigates a 2D environment with the
primary objective of reaching a goal position while passing
through a narrow passage, see Fig. 3. As illustrated in Fig. 3,
demonstrations D = {{tn,m,pn,m}400n=1}9m=1 were given to
the robot. However, after demonstrating the trajectories, an
obstacle is added along the path of the robot so that the mean
trajectory consistently intersects with the obstacle. Moreover,

we define a Restricted Zone (x ≥ 0.6) for the robot, as shown
in Fig. 3, after the demonstrations were collected. The robot
must not go into the Restricted Zone to ensure safety during
learning and execution. Consequently, an RL agent must learn
to avoid the obstacle and not to enter the restricted zone, while
still successfully reaching the goal.

We selected KMP, described in Section III-A, as the baseline
LfD method, with s = t and generated the necessary time-
based trajectory pkmp

t = E(η(t)) to reach the goal. The
residual RL policy πres(∆pt|t) modifies the mean trajectory
pkmp
t for avoiding the obstacle. The robot follows the resultant

2D position p̂t = pkmp
t +∆pt.

We then implemented predictive safety filters [21] in the
form of Active Constraints (AC) similar to our earlier work [8]
which keep the robot in the safe zone and avoid wall collisions
by filtering the unsafe p̂t commands. This resulted in the safe
residual RL policy πsafe(∆pt|t). As illustrated in Fig. 4(b),
ACs stop the robot 0.02 units before the restricted zone and
the walls. ACs implement projection functions which project
an unsafe robot position back to the safe zone before sending
it to the robot for execution.

We then compare these baselines to our KGRL algorithm
outlined in Eq. (17), where an RL policy π(ξ|t) generates
null space actions ξ that modify the trajectory using the null-
space projector in LC-NS-KMP. For KGRL, the KMP input is
s = t and outcome is η = pt. The robot follows the resultant
2D position p̂t = E(η(t)), derived from Eq. (17). In KGRL,
safety is ensured by defining a boundary constraint on robot
state as gn,1 = [−1, 0], cn,1 = −0.6, ∀n ∈ {1, 2, . . . , N}, so
that the robot does not enter into the Restricted Zone.

In all cases, the reward function for the robot is given by

rt = ra + ro + rT , ra = −10δp⊤
t δpt, (18)

ro =

{
−100(0.04− dt), if dt ≤ 0.04

0 otherwise
(19)

rT =

{
200 at terminal step T , if successful
0 otherwise

(20)

where δpt is the displacement of the robot, which can be
different from the residual action ∆pt, e.g. due to collisions
with the environment, dt is the distance of the robot from
the obstacle, the terminal reward rT is given if the episode
terminates successfully, ro is the obstacle avoidance cost, and
ra is the action cost. The episode is considered successful if
the robot reaches the goal within 400 time steps. Conversely,
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(a) Residual RL. (b) Safe residual RL. (c) KGRL (ours).

Fig. 4. Comparison of the robot poses resulting from isotropic exploration in
residual RL approaches, (a)–(b), and uncertainty-aware exploration in KGRL,
(c). For comparison purposes, manually-defined safety filters for safe residual
RL keep the robot in the safe zone and prevent wall collisions in (b).

Fig. 5. Comparison of the performance of residual RL and safe residual
RL with LfD to KGRL. KGRL achieves success rate of 1 from the beginning
while optimizing secondary costs. Both residual RL approaches show unstable
learning behavior as the robot often get stuck at the narrow passage due to
inefficient exploration.

it is deemed unsuccessful if the robot becomes blocked in the
narrow passage for 20 or more time steps, or if the maximum
limit of 400 time steps is reached without achieving the goal.

In all cases, the RL policy is learned using a DNN with
2 hidden layers with 256 neurons each. To train the RL
policies, we used the implementation of Truncated Quan-
tile Critics (TQC) [31] from Stable-baselines3 [32], with
parameters: learning rate = 0.001, soft update coefficient =

0.02, discount factor = 0.99, training frequency = 8, gradient

steps = 8, entropy regularization coefficient = auto.

The performance comparison between residual RL, safe
residual RL and the KGRL framework is shown in Fig. 5.
KGRL quickly achieves the primary objective while mini-
mizing both obstacle avoidance and action costs. In contrast,
residual learning approaches take much longer due to isotropic
noise (see Fig. 4(a) and Fig. 4(b)) used for exploration, which
often causes the robot to become stuck in the narrow passage.

Conversely, KGRL modifies trajectories based on the vari-
ance in demonstrations, reducing unnecessary exploration
in the low-variance region near the narrow passage (see
Fig. 4(c)). Additionally, hard constraints in KGRL keep the
robot within a safe zone, enhancing its overall performance.
Interestingly, the walls defining the narrow passage are not
modeled as hard constraints. Instead, collisions in that region
are avoided through soft constraints on exploration, informed
by the low variance in demonstrations where the robot re-
mained at a safe distance from the walls.

Fig. 6. Comparison of the number of wall collisions and constraint violations
per episode. KGRL avoids wall collisions as the exploration is guided by
low-variance in the motion near the narrow passage, while linear constraints
prevent any constraint violations. Residual RL shows high number of wall
collisions as well as constraint violations. Safety filters used in safe residual
RL prevent wall collisions and constraint violations.

Fig. 7. Performance of KGRL on BNC connector assembly task. The
robot learns to solve the task in 45 episodes on an average, simultaneously
minimizing the interaction force.

Figure 6 compares the number of collisions with the wall
and the constraint violations in residual RL, safe residual
RL and KGRL during learning. Since demonstrations exhibit
low variance while passing through the narrow passage, our
approach effectively shows no collisions with the wall due
to the guided exploration. As seen in Fig. 4, the magnitude
of the exploration actions generated in KGRL is low in this
region as it adheres to the demonstrated variance. On the other
hand, the isotropic exploration noise in residual RL leads to
more collisions with walls. Constraints enforced in KGRL
keep the robot out of the restricted zone, effectively limiting
the constraint violations to zero. Safe residual RL also shows
no constraint violations and collisions with the wall due to
safety filters. In this case, the safety filters are needed to be
explicitly implemented near the walls, unlike KGRL where
collisions with the walls are avoided due to the state-dependent
uncertainty-aware exploration. With no constraint enforcement
mechanism in residual RL, we observe a high number of
constraint violations and wall collisions during learning. Please
refer to the supplementary material for the video showing the
details of the experiments.

B. Experiments on real robot

To evaluate our framework on a real robot, we selected
a task from the NIST assembly benchmark 1 [5] involving
the plugging of a BNC connector. This task is particularly
challenging and requires multiple manipulation strategies for
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different phases: inserting, aligning, and locking the connector.
The strategy learned from demonstration alone is insufficient
to complete the task, and relying purely on RL would neces-
sitate an impractically large number of trials. Our approach
utilizes state-dependent guided exploration, allowing the robot
to explore the state-action space selectively, where necessary.
Additionally, linear inequality constraints reduce the state
space and ensure the robot’s safety. We use the DLR SARA
robot in our experiment for learning the task of inserting a
BNC connector. Figure 1 illustrates the experimental setup.
Images (A1) and (A2) present side and top views of the BNC
male connector, while (A3) and (A4) show the respective
views for the BNC female connector. Images (B1) to (B4)
depict the stages of picking, aligning, inserting, and locking
the BNC male connector, respectively, while the human is
demonstrating the task on the DLR SARA robot.

Demonstrations D = {{tn,m,pn,m}400n=1}5m=1 were pro-
vided for the aligning, inserting, and locking phases. The 6D
pose of the robot end-effector p = [x y z az ay ax]

⊤ (where
ax, ay, az represent the Euler angles) is measured in the target
frame, which is given by the end-effector pose when the
connector is locked. For practical purposes, this target frame is
assumed to be the last frame of each successful demonstration.
We then learned a vanilla KMP [4] from D with s = t
and η = pt. This KMP was tested but found inadequate for
task completion due to kinematic and dynamic uncertainties as
well as the KMP’s inability to effectively capture the contact
dynamics involved in the task.

We then formulated a KGRL problem and a RL policy
π(ξ|qt) was learned to complete the task, where the state for
the RL policy qt = [t p⊤

t f⊤
t ]⊤ with ft being the 6D wrench

measured at the center of compliance, s = t, and η = p. We
defined the linear inequality constraints in XY-plane so that
exploration does not deviate too far from the alignment pose,

g⊤
n,1 = [1 0 0 0 0 0], cn,1 = −0.002,

g⊤
n,2 = [−1 0 0 0 0 0], cn,2 = −0.002,

g⊤
n,3 = [0 1 0 0 0 0], cn,3 = −0.002,

g⊤
n,4 = [0 −1 0 0 0 0], cn,4 = −0.002, ∀n = 1 . . . N.

(21)

Using gn,f and cn,f formulated in eq. (21), matrices Ḡ and
C̄ are constructed.

The reward function for the RL agent is given by,

rt = −0.01ξ⊤t ξt − 0.01f⊤
t ft + rT , (22)

rT =


60 at terminal step T if successful,
−50 if robot detects collision
0 otherwise.

(23)

Since the DLR SARA robot can detect collisions observing
anomalous joint torques, we use this signal in the reward
function. The RL policy is learned using a DNN with 2 hidden
layers with 256 neurons each and TQC for training, similarly
to the simulation experiments with parameters: learning

rate = 0.001, soft update coefficient = 0.01, discount factor

= 0.995, training frequency = 8, gradient steps = 8, entropy

regularization coefficient = auto with initial value of 0.1.

Figure 7 illustrates the overall performance of KGRL. The

robot successfully learned to insert and lock the connector
in under 45 episodes while significantly reducing force
interactions with the environment—an important factor for
ensuring the robot’s long-term safe operation. The robot
achieved a success rate of 1 in 45 episodes, along with
a decrease in episode length, which results in faster task
completion. Please refer to the supplementary material for
the video showing the details of the experiments.

V. DISCUSSION

With evaluations in simulation and on the real robot, we
demonstrated that a complex task can be learned using KGRL
even with a sparse reward function in a sample-efficient and
safe manner. With KGRL, a simulated robot learns to achieve
the primary goal of reaching the target while minimizing
secondary costs, showing success rate of 1 from the begin-
ning. Meanwhile, both residual RL approaches show unstable
learning behavior with the same reward function, as shown
Fig. 5. In both residual RL approaches, isotropic exploration
noise leads to counter-productive exploration near the narrow
passage. Also, despite improving safety compared to the πres
baseline, the definition of πsafe comes at the cost of having
to manually define wall constraints for the task to succeed,
which is not required in KGRL, since the exploration behavior
is extracted from the data.

As discussed above, KGRL is capable of learning complex
contact tasks directly on the real robot. The safety of both
robot and environment is facilitated by the hard constraints
defined in the framework. For the task of inserting a BNC
connector, a policy learned from demonstrations using KMP
alone was not sufficient. With KGRL, we showed that the
demonstrations can be used for accelerating RL by extract-
ing the task completion strategy along with the exploration
strategy. With the possibility of learning the task on a real
robot safely and in a time-efficient manner, we largely alleviate
the need of modeling the task meticulously in simulation.
Furthermore, we use an off-the-shelf off-policy algorithm for
learning the tasks. Meticulous hyper-parameter tuning was not
necessary in our approach for learning the tasks successfully.

In Section III-C, we discussed the properties of LC-NS-
KMP. Given its ability to adapt based on demonstration
variance while respecting constraints, LC-NS-KMP is not
limited to RL and also offers desirable properties for LfD,
especially on real robots. Also note that we prioritized success
rate and learning efficiency in our evaluations, and therefore
did not explicitly focus on smooth exploration. Nevertheless,
the framework accommodates additional velocity constraints–
such as those proposed in [30] in the context of LfD–which
can be defined to promote smoother exploratory behavior.

We would also like to highlight some limitations of our
framework. The safety constraints in this work are manually
defined and require expert knowledge during design; however,
such constraints could also be extracted from demonstration
data, e.g., upper and lower limits of motion in each degree of
freedom. Another possible limitation is that we assume that
the demonstrations encode an appropriate exploration strategy,
which might not hold true in some cases. In such scenarios,
a potential mitigation strategy is to manually tune the covari-
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ance matrix Σ, as it is human-interpretable, leveraging the
flexibility inherent in our approach.

VI. CONCLUSION

In this paper, we presented a novel movement primitive
representation called Linealy Constrained Null-space Kernel-
ized Movement Primitives (LC-NS-KMP), which can learn
movement primitives from demonstrations allowing modifica-
tions through null-space actions, while respecting the linear
inequality constraints. We leverage this movement primitive
representation to deliver a novel constrained and guided RL
method called Kernelized Guided Reinforcement Learning
(KGRL). We evaluated our approach to highlight the effec-
tiveness of KGRL in learning challenging manipulation tasks
involving complex contacts directly on real robot. By integrat-
ing state-dependent guided exploration and linear inequality
constraints, we were able to facilitate efficient learning and
enhance the robot’s operational safety. Our approach enables
the robot to master connector insertion and locking in under
45 episodes, significantly reducing learning time and effort.
Additionally, the reduction in force interactions with the envi-
ronment indicates a pathway toward long-term reliability and
safety in robot manipulation. Future work includes automating
constraint extraction and incorporating non-linear constraints
to extend applicability to broader assembly challenges.
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