elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Black-Box Universal Adversarial Attack on Automatic Speech Recognition Systems for Maritime Radio Communication Using Evolutionary Strategies

Reif, Aliza Katharina (2025) Black-Box Universal Adversarial Attack on Automatic Speech Recognition Systems for Maritime Radio Communication Using Evolutionary Strategies. Masterarbeit, Radboud Universiteit Nijmegen.

[img] PDF - Nur DLR-intern zugänglich bis 1 März 2026
6MB

Kurzfassung

This thesis studies the design, implementation, and evaluation of a new universal adversarial attack targeting automatic speech recognition systems in a black-box setting. A genetic algorithm optimizes universal perturbations consisting of short noise bursts that cause mistranscriptions by balancing text similarity (character error rate) and perceptual audio similarity (Mel energy distance) to keep the noise minimally intrusive. Experiments are conducted on the models Wav2Vec 2.0 and OpenAI's Whisper using the standard English Librispeech dataset and a synthetic maritime radio communication dataset that contains more homogeneous data to investigate the attack's performance under varying parameters such as noise volumes and the number of audio files in the training set. We expose vulnerabilities in state-of-the-art ASR systems and the risks of attacks on safety-critical applications, such as maritime radio communication. We demonstrate that our attack is highly successful, and even an attack trained on a single input works universally. Whisper proves to be more robust against these attacks. We find that universal perturbations generalize better when trained on data more similar to the test set. A semantic defense is developed that presents a novel way to detect the attack. To our knowledge, our work represents the first universal black-box attack against ASR models.

elib-URL des Eintrags:https://elib.dlr.de/216278/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Black-Box Universal Adversarial Attack on Automatic Speech Recognition Systems for Maritime Radio Communication Using Evolutionary Strategies
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Reif, Aliza Katharinaaliza.reif (at) dlr.dehttps://orcid.org/0009-0005-7375-1109NICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorBonasera, Lorenzolorenzo.bonasera (at) dlr.deNICHT SPEZIFIZIERT
Thesis advisorRamirez Agudelo, Oscar HernanOscar.RamirezAgudelo (at) dlr.dehttps://orcid.org/0000-0002-9379-5409
Datum:11 August 2025
Open Access:Nein
Seitenanzahl:82
Status:nicht veröffentlicht
Stichwörter:universal adversarial attack, genetic algorithm, audio adversarial attack, maritime radio communication
Institution:Radboud Universiteit Nijmegen
Abteilung:Faculty of Science
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):V - keine Zuordnung
Standort: Rhein-Sieg-Kreis
Institute & Einrichtungen:Institut für KI-Sicherheit
Hinterlegt von: Reif, Aliza Katharina
Hinterlegt am:25 Sep 2025 09:11
Letzte Änderung:20 Okt 2025 13:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.