Mühlbauer, Maximilian Sebastian und Chalon, Maxime und Ulmer, Maximilian und Albu-Schäffer, Alin Olimpiu (2025) Software for the SpaceDREAM Robotic Arm. In: 2025 IEEE Aerospace Conference, AERO 2025, Seiten 1-10. IEEE. 2025 IEEE Aerospace Conference, 2025-03-01 - 2025-03-08, Big Sky, Montana. doi: 10.1109/AERO63441.2025.11068537.
![]() |
PDF
11MB |
Offizielle URL: https://ieeexplore.ieee.org/document/11068537
Kurzfassung
Impedance-controlled robots are widely used on Earth to perform interaction-rich tasks and will be a key enabler for In-Space Servicing, Assembly and Manufacturing (ISAM) activities. This paper introduces the software architecture used on the On-Board Computer (OBC) for the planned Space-DREAM mission aiming to validate such robotic arm in Lower Earth Orbit (LEO) conducted by the German Aerospace Center (DLR) in cooperation with KINETIK Space GmbH and the Technical University of Munich (TUM). During the mission several free motion as well as contact tasks are to be performed in order to verify proper functionality of the robot in position and impedance control on joint level as well as in cartesian control. The tasks are selected to be representative for subsequent servicing missions e.g. requiring interface docking or precise manipulation. The software on the OBC commands the robot's joints via SpaceWire to perform those mission tasks, reads camera images and data from additional sensors and sends telemetry data through an Ethernet link via the spacecraft down to Earth. It is set up to execute a predefined mission after receiving a start signal from the spacecraft while it should be extendable to receive commands from Earth for later missions. Core design principle was to reuse as much existing software and to stay as close as possible to existing robot software stacks at DLR. This allowed for a quick full operational start of the robot arm compared to a custom development of all robot software, a lower entry barrier for software developers as well as a reuse of existing libraries. While not every line of code can be tested with this design, most of the software has already proven its functionality through daily execution on multiple robot systems. The software stack is based on a real time Linux as operating system and the middleware "links and nodes" providing topic communication and service calls as well as process manager functionality. The actual mission software is partitioned into low-level real time control software consisting of a hardware abstraction layer providing telemetry from the robot's joints as well as validating and sending commands from a controller implemented in Simulink. Non-real time modules are responsible for parameterizing the controller and reading camera and other sensor data. A mission script orchestrates the individual tasks by commanding all software components. This mission script is also responsible for tracking subsystem health and potentially disabling erroneous subsystems and is itself monitored by the OBC's hardware watchdog. Finally, a data transmission program ensures prioritized telemetry data transfer to Earth via the spacecraft. Core components of this architecture have already been tested during the 42nd DLR parabolic flight campaign under micro gravity conditions proving their effectiveness and reliability. The detailed software architecture, design choices and software tests will be described in the remainder of the paper.
elib-URL des Eintrags: | https://elib.dlr.de/215682/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Anderer) | ||||||||||||||||||||
Titel: | Software for the SpaceDREAM Robotic Arm | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 14 Juli 2025 | ||||||||||||||||||||
Erschienen in: | 2025 IEEE Aerospace Conference, AERO 2025 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/AERO63441.2025.11068537 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-10 | ||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Software Architecture, Space Software, Robotics | ||||||||||||||||||||
Veranstaltungstitel: | 2025 IEEE Aerospace Conference | ||||||||||||||||||||
Veranstaltungsort: | Big Sky, Montana | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 1 März 2025 | ||||||||||||||||||||
Veranstaltungsende: | 8 März 2025 | ||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - On-Orbit Servicing [RO], R - OOS: Virtuelle Realität [RO], R - Telerobotik | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||||||
Hinterlegt von: | Mühlbauer, Maximilian Sebastian | ||||||||||||||||||||
Hinterlegt am: | 05 Aug 2025 22:42 | ||||||||||||||||||||
Letzte Änderung: | 05 Aug 2025 22:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags