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Abstract— Impedance-controlled robots are widely used on
Earth to perform interaction-rich tasks and will be a key enabler
for In-Space Servicing, Assembly and Manufacturing (ISAM)
activities. This paper introduces the software architecture used
on the On-Board Computer (OBC) for the planned Space-
DREAM mission aiming to validate such robotic arm in Lower
Earth Orbit (LEO) conducted by the German Aerospace Center
(DLR) in cooperation with KINETIK Space GmbH and the
Technical University of Munich (TUM). During the mission
several free motion as well as contact tasks are to be performed
in order to verify proper functionality of the robot in position
and impedance control on joint level as well as in cartesian con-
trol. The tasks are selected to be representative for subsequent
servicing missions e.g. requiring interface docking or precise
manipulation.

The software on the OBC commands the robot’s joints via
SpaceWire to perform those mission tasks, reads camera images
and data from additional sensors and sends telemetry data
through an Ethernet link via the spacecraft down to Earth.
It is set up to execute a predefined mission after receiving a
start signal from the spacecraft while it should be extendable to
receive commands from Earth for later missions. Core design
principle was to reuse as much existing software and to stay
as close as possible to existing robot software stacks at DLR.
This allowed for a quick full operational start of the robot arm
compared to a custom development of all robot software, a
lower entry barrier for software developers as well as a reuse
of existing libraries. While not every line of code can be tested
with this design, most of the software has already proven its
functionality through daily execution on multiple robot systems.

The software stack is based on a real time Linux as operating
system and the middleware ”links and nodes” providing topic
communication and service calls as well as process manager
functionality. The actual mission software is partitioned into
low-level real time control software consisting of a hardware
abstraction layer providing telemetry from the robot’s joints as
well as validating and sending commands from a controller im-
plemented in Simulink. Non-real time modules are responsible
for parameterizing the controller and reading camera and other
sensor data. A mission script orchestrates the individual tasks
by commanding all software components. This mission script is
also responsible for tracking subsystem health and potentially
disabling erroneous subsystems and is itself monitored by the
OBC’s hardware watchdog. Finally, a data transmission pro-
gram ensures prioritized telemetry data transfer to Earth via the
spacecraft. Core components of this architecture have already
been tested during the 42nd DLR parabolic flight campaign
under micro gravity conditions proving their effectiveness and
reliability. The detailed software architecture, design choices
and software tests will be described in the remainder of the
paper.
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Figure 1. Flight model of the SpaceDREAM robotic arm
with joints 1 - 4 and pin end effector EE . The base plate

contains a spring mechanism S that allows to simulate
environmental contact with known forces. A duck D and
a segment of a launch adapter ring LAR are mounted as
computer vision test objects. Two cameras are part of the
setup, CAM1 is mounted at the end effector while CAM2

is mounted at the robot base (hidden by the joint).
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1. INTRODUCTION
Recently, In-Space Servicing, Assembly and Manufacturing
(ISAM) activities gained traction, NASA has also created
the Consortium for Space Mobility and ISAM Capabilities
(COSMIC) in 2023 for further coordination. On Earth, a
multitude of projects have already researched methods for in-
orbit servicing, assembly and manufacturing [1–6] with the
prospect of bringing the developed algorithms to space.
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Key enabler for such mission capabilities in space is a dexter-
ous robotic manipulator. Already in 1981, the Shuttle Remote
Manipulator System (SRMS) [7] was tested on a Space
Shuttle mission. Its successor, the Space Station Remote
Manipulator System (SSRMS) [8] was launched in 2001
and is since then operating on board the International Space
Station (ISS). Both robotic arms are heavy, large arms which
can only move in zero gravity and are position controlled.

Based on DLR’s lightweight robot technology [9], the
ROKVISS mission [10] in contrast evaluated the first torque-
controlled robot arm in space. Using joints developed within
the Mascot project [11], the Caesar [12] and TINA [13]
robotic arms have been developed at DLR, both serving
different needs of individual robotic missions. A notable
competing robot is GITAI’s inchworm robot [14] which
comes in a similar size but without torque controlled joints.

The SpaceDREAM project builds upon the TINA hard-
ware [13] with the goal of a low-cost evaluation of the
robotic arm and its controllers. Specifically, operations in
outer space with vacuum, extreme temperature ranges as
well as radiation should be tested. This paper details the
software running on the On-Board Computer (OBC) which
was developed for the mission under unique time and cost
constraints. While existing frameworks already tested in
space such as DLR Outpost [15], NASA’s F Prime [16, 17]
or core Flight System [18] could have been used to develop
the flight software, we have instead opted to reuse as much
software from DLR’s ground robots as possible. Main reason
for this decision was the familiarity of the developers with
existing software and the potential to reuse many existing
software components that have already proven their reliability
through years of operation on different robotic systems. A
re-implementation of e.g. already available control software
for other frameworks in the required quality level would have
been impossible within the project’s timeframe.

The outline of the mission to be performed is detailed in Sec-
tion 2, ranging from simple joint-level control over compound
motions with different controllers up to the integration of
adaptive Virtual Fixtures (VFs) [19] which will in the future
aid with teleoperated control of the robot. After analyzing the
requirements in Section 3, we describe the software compo-
nents that could be reused (Section 4) as well as the newly
developed software (Section 5). In Section 6, we outline the
integration and testing of individual components as well as of
the whole system performed as of now. Section 7 concludes
with an outlook to remaining steps before a mission start.

2. THE SPACEDREAM MISSION
Being selected for the inaugural flight of the Rocket Factory
Augsburg’s RFA One rocket through the DLR microlauncher
payload competition [20] in the end of 2022, the Space-
DREAM project was set up to deliver a space-ready robot
arm in a very short timeframe as the flight was initially
scheduled for December 2023. During the mission, the robot
is attached to the upper stage of the rocket which is actively
deorbited after the end of its operational lifetime, resulting
in a total mission time of a few hours. With this short
mission duration and no communication uplink but only a
downlink for transferring data, the execution of the robot
operations is set to start immediately after reaching orbit
with no human intervention and commands. Timeframe,
mission duration and the high risk associated with a first flight
lead to the decision to pursue a cost-effective evaluation of
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Figure 2. Overview of the OBC interfaces and
peripherals from the software perspective.

the technology. This prohibited the development of a fully
custom software solution and necessited the reuse of proven
existing software to the extent possible.

Given these constraints, the mission goals are: 1) check out
the robotic system, i.e. verify that all sensors still work
and give nominal values and that the motors turn, 2) verify
that simple single-joint motions work, 3) perform compound
motions and 4) test the adaptive VFs which will later be
used for teleoperation in a space environment. Pictures
and short videos of the moving robot are acquired by the
cameras placed on the base and at the tool tip (Fig. 1). The
end effector camera allows to record a small dataset of the
objects mounted to the base plate which will contribute to the
development of space-grade vision algorithms. Those mis-
sion components allow to validate nominal robot behaviour
in space and will lay the foundations of a software stack
that can later be used to operate the robot in other space
missions such as on-orbit servicing or assembly tasks. The
individual mission parts are set to be executed in sequence
after checking preconditions, e.g. the operational status and
validity of torque measurements before performing opera-
tions depending on torque measurements.

Procurement of space hardware has long lead times. Hence,
the principle criteria for the OBC selection was its availability
within the project timeframe. We therefore chose the Xiphos
Q8s [21] as OBC as it could be delivered timely and it
combines all required features on space-grade hardware. It
features a quad core ARM Cortex A53 processor for the
software components and a Xilinx Zynq FPGA which allows
to interface the robot’s SpaceWire communication link using
an IP core as well as GPIO ports for controlling the logic and
motor power of the robot as well as the cameras and LED
light in the end effector. 2x 128GB of eMMC memory allow
to buffer telemetry data before it is being transmitted to Earth.
4 partitions of 128MB each on two flash memories contain
the operating system based on Yocto Linux which is extended
by Xiphos drivers for the hardware interfaces on the FPGA
and the mission software. Another important peripheral is
the watchdog which is used to restart the operating system in
case of non-recoverable software malfunction. Fig. 2 shows
the peripherals and interfaces of the OBC connecting it to
the joints of the robot, the spacecraft and other peripherals.
The combination of this available OBC hardware with the
mission requirements determines the software requirements
which will be detailed in the next section.

3. SOFTWARE REQUIREMENTS
The software on the OBC of the SpaceDREAM arm is
responsible to 1) execute the mission procedure, i.e. move
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the robot arm with predefined motion primitives testing var-
ious capabilities of the arm while recording telemetry data,
images and videos as well as 2) transmit the resulting log
data to Earth via the spacecraft. They can be developed
independently since they only share a limited interface for
exchanging log data. The requirements for both components
can therefore also be analyzed independently. No other soft-
ware is running on the OBC, thus, all resources are available
for the application.

General Requirements

Most critical requirement for the software development was
the timeline and available resources. Initially, only 6 months
were allocated for the development of a fully functional
software stack followed by 3 months of testing with 3-4
full time software developers. This required a very focused
development, only programming novel components where
required and reusing as much software as possible. Using
software with which the developers were already familiar was
a key requirement to speed up programming.

For testing the software, an Engineering Model (EM) func-
tionally equivalent to the Flight Model (FM) was foreseen. As
some changes to the original TINA robot arm were required
to achieve reliable space performance and as the EM was
also used to document and train the assembly of the FM, it
was not available from the start of software development.
This required the development of a basic simulator which
allowed to program and visualize the robot motions while
generating data comparable to the actual robot. The simulator
also enabled the parallel development of e.g. the mission and
the data transmission software.

Because of the experimental nature of the mission, an end of
the mission through deorbiting or a temporary or permanent
loss of the downlink communication is to be expected at any
time. Furthermore, as there is no uplink, no intervention or
diagnosis of the system is possible - recovery plans have to
be built into the software right from the start. The software
should therefore start from simple tasks moving on to more
complex, error prone tasks. As last resort in case of errors,
a reboot of the OBC combined with a hard reset of the
controllers inside the robot arms is to be executed. This
requires the ability of all components to restart after a reboot
with possibly arbitrary arm configuration.

Mission Execution Requirements

The Mission Execution component has to execute a set of
preprogrammed motions to test the various capabilities of the
robotic arm. As first step, after being powered on via a Gen-
eral Purpose Input/Output (GPIO) line from the spacecraft,
the software has to listen to a start command received via
UDP. In case this command is not received, an on-ground
test is assumed and the robot should not move. When the
start command is received, the robot is being powered on
and the Hold-Down and Release Mechanisms (HDRMs) are
released. Next, some basic health checks have to verify
nominal sensor measurements in the robotic arm. Succeeding
tests are required to continue with the mission execution,
in case of faulty measurements, a reboot should be tried to
achieve a hard reset of all components.

During the actual mission execution, the robot arm should
move with different controllers. For this, telemetry has to be
received from and commands have to be sent to the robot’s
joints at a regular interval of 100ms. A parametrizeable real-
time controller has to execute algorithms processing those

measurements and provide commands. Furthermore, images
and videos as well as telemetry data have to be recorded and
stored permanently on the eMMC in parallel. The execution
of those individual components has to be orchestrated, the
controller needs to be parametrized e.g. with trajectories
and the overall execution needs to be supervised to detect
potential system freezes.

Most of those requirements, especially about splitting soft-
ware in individual components, the communication between
those parts as well as the process dependency management
are equivalently found on conventional robotic systems. We
therefore try to match as many existing components as possi-
ble to meet these requirements while avoiding to develop new
software.

Data Transmission Requirements

The communication provided by the RFA spacecraft is as-
sumed to only provide a downlink without uplink, which
means that no acknowledgements can be received. This
prohibits the use of existing transfer protocols such as the
CCSDS File Delivery Protocol (CFDP).1 The data transmis-
sion software therefore has to be developed from scratch
keeping those constraints in mind.

To ensure data transmission, packets have to be sent multiple
times to increase the chance of a successful transfer. The
retransmission ratio has to be configureable for different files
- log data containing robot measurements is more important
than videos potentially containing redundant frames. Further-
more, more recent data should be transferred with a higher
priority. This is especially relevant as the system might reboot
in case of unrecoverable errors, in this case, old data should
be retransmitted when bandwith is available but only with
lower priority.

For minimal interfacing requirements with the mission execu-
tion, telemetry data should be stored in the file system by the
mission execution and subsequently read by the data trans-
mission. The mission execution has to ensure a reasonable
amount of data to be transferred by e.g. limiting the logging
rate.

4. REUSED SOFTWARE COMPONENTS
The software stack for robotic systems at DLR’s Institute
of Robotics and Mechatronics usually consists of individual
realtime and non-realtime software components communicat-
ing with each other through a custom middleware. They are
orchestrated through a process manager and running on Linux
computers. As the OBC is running Yocto Linux, software
using standard Linux APIs can be used relatively unchanged,
only some adaptations were needed as no graphical interface
is available and thus respective libraries are missing.

Process Management

For managing processes, the links and nodes2 process man-
ager is being used. This software manages process environ-
ments by e.g. setting individual path and other environment
variables. Via a configuration file, dependencies between
processes can be modeled to ensure that processes start in the
required order. By parsing the standard output of a process

1https://public.ccsds.org/Pubs/727x0b5.pdf
2https://gitlab.com/links_and_nodes/links_and_
nodes
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Figure 3. The process manager gui.

against regular expressions, it can be determined whether a
process is fully ready or has error output. Fig. 3 shows the gui
of this process manager that can be used to inspect process
execution. The same gui can also connect to the headless
instance running on the OBC. In order to be able to use this
process manager, small code changes were required to ensure
full independency from gui libraries. As the process manager
is written in Python, additionally, the Ruff linter3 was used to
fix potential coding issues.

Inter-process Communication

links and nodes also provides both realtime topic as well as
service communication via a request / response scheme. The
process manager establishes communication channels based
on predefined message definitions which can then be used by
the various bindings for e.g. C++, Python or Simulink. Topics
are used for cyclic messages such as telemetry or commands
to the robot while services handle acyclic requests such as
recording camera images or parameterizing the controller.
Parameters are a client-side implementation using services
that allow to expose and override certain variables externally.

Build Infrastructure

To be able to build software for robot systems with hetero-
geneous operating systems, the conan4 package manager is
used. Recipes written in Python specify dependencies, how
the software package is built from sources, packaged and
they also allow to set runtime environment variables. Those
recipes can also be used to build software for the OBC - in
fact, by ensuring that the Yocto base installation contains all
required system dependencies, the same dependency tree can
be used. This allows to reuse well-tested dependencies of
reused software components, therefore decreasing develop-
ment effort and increasing the ratio of already tested software.
A further element is the continuous integration infrastructure
which allows to build packages on a build server for ev-
ery commit and software collections at specified timepoints,
which allows to always have prebuilt binaries available.

3https://docs.astral.sh/ruff/
4https://docs.conan.io/2/

Control Software

For the control software, a Simulink model with C code
generation is used. Usage of the Matlab / Simulink toolchain
is nowadays common in space projects [22]. To integrate
Simulink models with the build infrastructure and commu-
nication via links and nodes, a custom Simulink target is
available. This both allows to reuse existing control software
such as an interpolator for joint-space trajectories, a library
of adaptive Virtual Fixtures [19] and to connect to a model
running on the OBC in external mode to inspect signals and
tune parameters.

Hardware Abstraction Layer (HAL)

The SpaceWire protocol used to communicate with the joints
of the robot requires configuration commands to be sent at
the beginning, followed by a cyclic communication. As the
protocol is very similar to DLR’s David robot, its HAL [23]
can be reused with minimal changes.

5. NEW SOFTWARE COMPONENTS
Some components had to be developed specifically for the
SpaceDREAM project. While this is true for every robotic
system, a special focus needed to be taken to ensure au-
tonomous operation without the possibility of human inter-
vention and the need to transfer the data to Earth.

Cross-compiling workflow

The build infrastructure described in Section 4 can also be
used to compile software for the OBC. This requires a two-
step process: first, a cross compiler has to be created which
can then be used to compile for the target architecture. To this
end, the Yocto Linux build process is wrapped inside a conan
package which then provides the cross compiler toolchain as
well as infrastructure like a custom Python to be used during
the build process. The Yocto build is configured to provide a
set of basic packages to match the standard Linux installation
at DLR; by wrapping the build process into a conan recipe,
additional packages can easily be added. This package can
then be injected as build tool using a conan cross compiling
profile for the OBC. Using this conan profile, binaries for
the OBC can be created on the Continuous Integration (CI)
server which are then uploaded into an artifact storage. For
core components, this build is performed with every push;
a further build at midnight ensures that all packages are
available for the OBC. Wrapping the toolchain into a conan
package also allowed to easily compile it for other platforms
as for example required for transitioning from OpenSuse
Leap 15.4 to 15.5 during the development process.

The second step involves creating an image that can be writ-
ten into the four 128MB radiation-hardened flash partitions
of the OBC. This build process combines basic packages
from the used Yocto Linux with conan packages which are
downloaded in binary form from the artifact server and then
injected into the target image. The resulting image can then
be flashed on the OBC and tested with the robot. This
process ensures packages can be tested on desktop computers
in simulation and the same code can be deployed on the
target without further manual work. Furthermore, a fast
development cycle is ensured - for updating the OBC, only
new binaries from the artifact server need to be retrieved,
creating and flashing an update image can be done within
minutes.

4
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interpolator is started. Changing controllers causes a

reset of the interpolator to replan the trajectory.

Simulink Controller

The controller software is responsible to process telemetry
and send corresponding commands at a fixed rate of 100Hz.
This rate was chosen as a tradeoff between good performance
of torque control algorithms and system load. The software
is developed using Matlab / Simulink which was already used
for the ORION GN&C software [24,25] leading to modeling
guidelines [22] which we loosely follow. To convert the
Simulink block diagram to correct C code which is then
compiled for the target platform, the Simulink coder is used.
Employing Simulink allows to have a good understanding of
the control structure which is hard to obtain for code written
in C / C++.

Main part of the controller are two state machines, a high
level state machine controlling the operational modes of the
entire robot arm (Fig. 4) and a joint level state machine
controlling the operational mode of each joint (Fig. 6). The
high level state machine waits until all joints are referenced
and sends a reset trigger in case of errors. Once operational,
links and nodes parameters allow to switch between manual
inputs for position-, impedance- or torque control, interpola-
tor control (Fig. 5) or Virtual Fixtures control [19]. Based
on this selection, the high level state machine commands the
required tranisitions for the joint level control. It furthermore
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Figure 6. Joint level state machine used to switch
between different joint controllers. Inside the “ready”
state (blue box), switching is performed immediately

according to the state requested from the high level state
machine.

Figure 7. End Effector camera in simulation looking at
the duck.

handles the state of the joint space interpolator which requires
to first compute a trajectory before the joint angle commands
can be sent to the robot’s joints. The joint level state machine
handles resetting the joints on startup or when requested
by the high level state machine and sets the required joint
commands once operational (Fig. 6).

Actual control algorithms include a simple joint-level
impedance controller which allows to set a per-joint stiffness
values and Cartesian impedance control using Virtual Fix-
tures [19]. As last step, a joint limit avoidance cuts off out
of range joint position commands in joint level position or
impedance control and computes torque commands to push
the robot back into valid joint position regions for torque
control. While the mission sequence is designed to keep the
robot far from joint limits, during development or when hand
guiding the robot, those soft limits help to avoid the hard
limits imposed by the HAL with tedious reset sequences.

Camera Interface

The camera interface is designed to be agnostic to the camera
hardware and the number of camera devices. To this end, a
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Figure 8. Base camera in simulation, taking a picture of
the whole robot.

camera server was developed that instantiates one or multiple
camera controllers. Each controller handles the communica-
tion with a single camera and provides a simple interface to
the camera server. In return, the server offers services to other
software components for actions, such as taking an image,
recording a video, listing stored media, and deleting media.
Each action is further parameterized by options that control
aspects of the captured media. For instance, the action to
take an image takes parameters concerning resolution, field
of view, color space, and whether an additional light source
should be used.

In this work, we used two GoPro Hero 10 black5 cameras,
which are controlled via a REST API. One camera is mounted
at the end effector while the other one is placed at the base
of the robot (Fig. 1). As the OBC only offers one USB
connection, the cameras are connected to a USB switch which
needs to be switched to the camera that should be used. Once
the action to take an image is called, the camera server sends a
request to the camera controller, which in turn sends a request
to the camera. After the shutter is triggered, the camera
encodes the image and stores it on the camera’s memory card.
The GoPro Hero 10 black can capture images with different
fields of view but only in 4k resolution in the RGB color space
with 8-bit encoding in the .jpg format. The camera controller
waits for the image to be stored and then downloads the
image to the OBC. Finally, a post-processing step reduces the
resolution and converts the color space to the desired format.

To enable a development of the mission sequence in simu-
lation also with camera images, a simulation of the cameras
is implemented in rViz (Section 6). Fig. 7 shows an exem-
plary view of the end effector camera while Fig. 8 shows a
simulated image from the base-mounted camera.

Startup and Mission Sequence

Fig. 9 shows the startup sequence which is executed as a
systemd service after booting. By default, the system should
only boot once and stay active for the whole mission. In
case of errors, reboots might occur which should also be
handled by the software without malfunctioning of the demo

5https://gopro.com/en/us/shop/cameras/
hero10-black/CHDHX-101-master.html
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Figure 9. Startup sequence after which network and
eMMC are prepared for the demo runs.

Create log folder & initialize:
• Record start timestamp
• Create data sync config

Start links and 
nodes daemon

Select camera # 
(random)

Start links and 
nodes manager

with mission script

Wait until mission
script terminates

or timeout

Stop links and 
nodes manager

with all processes
exit

Figure 10. Mission execution sequence implemented as
systemd service. After finishing, systemd will restart the

service.

or data loss. It first enables both the Ethernet as well as the
SpaceWire networks and then activates the hardware Watch-
dog which reboots the system in case any of the following
steps gets stuck. Next, one eMMC card is mounted for storing
the demonstration data to be transmitted. As documented by
Xiphos, the eMMC controller might be impaired by radiation
effects which might render it unresponsive. It is however
unlikely that the controllers for both eMMC cards fail at the
same time. The startup sequence therefore selects one eMMC
card at random; when the further startup fails because of a
blocking controller, the Watchdog will automatically reboot
the system. This random selection then at some point selects
the other, working controller. In case mounting of the first
selected eMMC fails, the second one is selected. If this
one also cannot be mounted, a reformatting of both cards is
attempted, as a last resort, a reboot is initiated.

After successful preparation of the system, the mission se-
quence is executed until the spacecraft deorbits. The mission
sequence consists of robot motions with image and telemetry
data recording of approximately 20min, followed by a sleep-
time of 5min to allow for data transmission. The mission
sequence is depicted in Fig. 10. The robot motion is coordi-
nated by a mission script which is launched from within the
links and nodes manager. This script also regularily updates
the Watchdog - in case this script becomes unresponsive as
e.g. the robot cannot move anymore, a system reboot will be
triggered. We chose to trigger the Watchdog from this script
as it depends on all other processes controlling the robot and
should therefore fail the earliest.

Data Synchronization

As mentioned in the requirements, we assume to only have a
downlink but no response channel through which acknowl-
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edgments of transmission can be sent. The data synchro-
nization software therefore needs to work without acknowl-
edgement, it thus resends data depending on the importance
to compensate for potential packet losses and transmission
errors. The most important data is sent first to ensure it is
being transferred before a potential deorbit of the spacecraft.
The protocol is designed to transmit data using UDP and a
low transfer rate of around 1Mbit/s, however, using TCP,
the spacecraft could apply backpressure to communicate the
available bandwidth. Checksums then allow to verify the
integrity of the transferred data.

For transferring data, files are split in fragments containing a
checksum. The packet size to be transferred depends on the
underlying network’s capabilities, each packet consists of one
or multiple fragments. Depending on the connection quality,
a higher or lower fragment size can be chosen - smaller
fragments are beneficial with frequent transmission errors
while bigger fragment sizes reduce the overhead coming from
the transmission of checksums. Three parameters allow to
configure the transmission of fragments coming from a file:
a priority value, a resend number and a minimum waiting
time between retransmission. Based on those parameters,
fragments are ordered in a priority queue for sending. On the
receiver side, those file fragments are merged again. Missing
data leads to holes, i.e. zero-filled fragments in the data. This
necessites the usage of robust file formats - e.g. using the
jpeg format for images is beneficial as missing fragments do
not corrupt the whole image. As the image header does not
have this robustness property, it is duplicated on file level to
have a higher chance of successful metadata transmission.

The data synchronization is started from a systemd service
and is also using a systemd Watchdog for supervision which
will first restart the process and then trigger a system reboot
in case of recurring faults. As data is stored under different
folder locations for the individual eMMC cards, the synchro-
nization will not override data after a reboot which might
mount a different eMMC compared to the previous boot. For
detecting new or changed data in the transmission folder, the
inotify kernel interface is being used. In addition to that,
the transmission folder is also scanned repeatedly, computing
checksums of potentially changed files to detect to discover
modified data.

6. INTEGRATION AND TESTING
With all reused and new software components ready, the
overall mission software can be put together. Fig. 11 shows
an overview of all those elements. Except for the data
synchronization process, all software components are started
from the links and nodes manager. The first process to be
started is the digital joint power which enables power for the
digital electronics of the robotic arm. This is a prerequesite
for SpaceWire communication and must therefore be started
before starting the HAL. Before enabling power, the process
first disables power to achieve a reset of the robot’s joints
- it also does not communicate with the other processes as
the power needs to be active during the whole mission. The
other processes communicate using links and nodes topics,
services, and parameters. The lnrecorder process records all
communication at a specified rate; this data is then sent to
Earth via the data synchronization process for later analyis.

Code Quality

Even before testing the code, a set of linters was applied to
all new code base to ensure a good quality even though it was
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Figure 11. Overview of all software components and
their communication flow. Fully reused components are
depicted with a green box, partially reused components
in blue and new components in orange. Note that with
the available communication framework and process

manager, a huge part of these components is actually also
based on reused software.

Figure 12. Robot visualization in RViz. This
visualization is used to visualize robot states both for the

real as well as the simulated robot and to simulate
camera images.

not possible to write unit tests for every function. To this end,
cppcheck was applied to all C++ code to find potential issues
already during development. For Python code, a combination
of the Ruff linter and mypy for type checking was applied -
all new Python code was fully typed to avoid issues from type
errors. The black formatter and isort were furthermore used
to avoid whitespace code changes when different developers
were working on the same code.

Simulated Development

As explained in Section 3, no hardware was available at
the beginning of the software implementation, also, new
implementations should be tested in simulation first in order
not to damage the EM. To therefore enable a simulation
environment for development, a small dynamic simulation of
the robot was set up using Simulink. Combined with a visu-
alization and camera simulation in RViz (Fig. 12), the whole
software stack as implemented on the OBC can be run on a
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desktop computer as well. This simulation environment is set
up in a custom configuration for the links and nodes manager
which also contains the data synchronization process to also
be able to test the data transfer with the actual amount of data.

In total, a mission sequence of approximately 20min was
developed using this approach. First, position-controlled
motions are executed; in particular, the beginning of the
unfolding sequence of the robot is recorded as video and the
robot is then extended to a configuration where it is fully
visible from the base camera (Fig. 8). After a further set
of movements exciting all joints and taking pictures of the
the various objects in the robot’s workspace, the validity
of torque measurements is verified. In case of nominal
readings, a further sequence of impedance controlled motions
is performed followed by motions governed by automated
VFs [19]. This mission sequence ensures a higher probability
of successful motion recordings as motions are performed
from lower to higher risk.

Integration on the Robot

While the mission sequence itself could be developed in
simulation, the startup sequence and hardware specifics had
to be implemented on the actual hardware. In particular, the
pin layout and GPIO implementation had to be done together
with the OBC manufacturer. A major issue in the beginning
was a faulty SpaceWire implementation which had a bug
with the size of SpaceWire packets used by the robotic arm.
Fixing this implementation required time and iterations with
the manufacturer which again highlights the importance of
simulation-driven development to still be able to implement
the actual mission.

A further issue found during integration was that switch-
ing between the GoPro cameras caused a corruption of the
SpaceWire communication. As this corruption could not be
resolved by different timings or other workarounds, it was de-
cided to only use one camera during the mission. The mission
sequence script therefore selects either the base or end effec-
tor camera at random which is then enabled before a mission
execution, therefore ensuring a stable communication with
both the robot as well as the camera. As the data from the
end effector camera shows more variance and is intended to
be used to create a dataset of vision objects relevant for space
manipulation in a space context, this camera is selected with
a higher probability.

Parabolic Flight Testing

While the actual space flight of the FM was delayed due to
technical issues with the spacecraft, a parabolic flight could
already be conducted with the EM to verify its performance
unter 0 g conditions [26]. On the hardware side, mechanical
brakes were integrated in the joints to support during the
additional load of the 2 g phase of the flight. No cameras were
connected to the robot as the parabolic flight only offers very
controlled illumination conditions that can easily be emulated
on Earth. Furthermore, taking a camera image easily takes
as long as a full parabola (22 s). On the software side, a
Linux laptop was connected to the OBC via LAN, running
the links and nodes manager gui to allow for control from
the operators. The laptop was also used to run the high-level
mission script, thus only leaving the GPIO control, Simulink
controller and HAL processes to run on the OBC.

Both the controller as well as the HAL process are part of
the real time control loop of the robot. While no specific
load measurements on the OBC were performed, real time

execution at a rate of 100Hz could be ensured during the
whole flight with an average jitter of 0.5ms in the controller.
As the data was stored locally, all messages and service calls
were recorded leading to a data rate of 1.3Mbit/s. Assuming
an available downlink of 1Mbit/s, this data rate has to be
reduced for a space flight, which is easily possible by e.g.
reducing the recording rate of most topics.

Pending Tests

While the HAL and controller model could be tested ex-
tensively during the parabolic flight, tests for other central
parts were not yet conducted. In fact, during development,
an unforseeable delay of the flight became apparent which
halted programming of specialized components. Therefore,
a full implementation of the mission sequence with the exact
robotic movements is yet to be completed from the experi-
ence during the parabolic flights. This implementation also
depends on the available workspace for the robot as well
as acceleration limits on the spacecraft which have not been
communicated to date.

Once this information is available, a finalized implementa-
tion of the mission sequence is possible. This full mission
should be tested to ensure that it meets physical workspace,
OBC load and power requirements and that all data can be
transferred successfully from the OBC to a simulated ground
station with injected defects using the expected data rate. Key
components to be tested are furthermore the startup sequence
(Fig. 9) with injected eMMC faults as well as the automatic
mission execution (Fig. 10) which have not yet been tested
thoroughly as they were not required for the parabolic flight.
The same applies for the camera and its software.

Regular testing will also allow to calibrate nominal sensor
measurement values which can be used during the robot
checkout performed at the start of the mission sequence
(Section 2). Finally, tests of the only once executed HDRM
release sequence as well as restarting the robot from arbitrary
configurations after an OBC reboot have to be tested. With
testing those individual components as well as the full mis-
sion, the whole system will be ready for a space flight.

7. CONCLUSION AND OUTLOOK
During the SpaceDREAM project, space software was suc-
cessfully developed with very limited resources and within
a short timeframe. While the software stack yet has to
prove its reliability and usefulness in space, tests during
a parabolic flight already showcase the robustness of core
components. We believe that reusing existing and well-
tested software not only speeds up development times for
high risk missions, but would also lower the entry barrier for
programming space software, therefore potentially freeing up
time for increasing code quality. Within the existing code
base, the most urgent issue to understand and potentially fix
is the error when switching between the two cameras. In
case an uplink is available, the data synchronization software
could be replaced by a standard component which would also
reduce the bandwidth requirement. The compiler toolchain
could be improved by switching to conan 2. The advanced
dependency model would then allow to e.g. replace some
3rdparty packages by Yocto system packages and to further
optimize the dependency graph, leaving out unneeded pack-
ages. With both hard- and software ready to be finalized for
an actual space flight, a verification of both the robotic arm
as well as the software approach is on the horizon and only
waiting for a suitable flight.
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Schäffer, V. Kutscher, C. Plesker, T. Dasbach, S. Damm,
R. Anderl, and B. Schleich, “Ai-enabled cyber–physical
in-orbit factory - ai approaches based on digital twin
technology for robotic small satellite production,” vol.
217, pp. 1–17.

[7] E. Wu, J. Hwang, and J. Chladek, “Fault-tolerant joint
development for the space shuttle remote manipulator
system: analysis and experiment,” vol. 9, no. 5, pp. 675–
684.

[8] R. McGregor and L. Oshinowo, “Flight 6a: deployment
and checkout of the space station remote manipulator
system (ssrms),” in Proceedings of the 6th International
Symposium on Artificial Intelligence, Robotics and Au-
tomation in Space (i-SAIRAS), 2001.

[9] G. Hirzinger, N. Sporer, A. Albu-Schaffer, M. Hahnle,
R. Krenn, A. Pascucci, and M. Schedl, “Dlr’s torque-
controlled light weight robot iii-are we reaching the
technological limits now?” in Proceedings 2002 IEEE
International Conference on Robotics and Automation
(Cat. No.02CH37292), ser. ROBOT-02, vol. 2. IEEE,
pp. 1710–1716.

[10] G. Hirzinger, K. Landzettel, D. Reintsema, C. Preusche,
A. Albu-Schaeffer, B. Rebele, and M. Turk, “Rokviss
– robotics component verification on iss,” in Proc. of,
September 2005.

[11] J. Reill, H.-J. Sedlmayr, P. Neugebauer, M. Maier,
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M. Maier, S. Moser, J. Reill, M. A. Roa Garzon,
H.-J. Sedlmayr, N. Seitz, M. Stelzer, A. Stemmer,
G. Tubio Manteiga, T. Wimmer, M. Grebenstein, C. Ott,
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Schäffer, “Robograv - towards force sensitive space
manipulators,” in Proceedings of the 17th International
Symposium on Artificial Intelligence, Robotics and Au-
tomation in Space (i-SAIRAS), 2024.

BIOGRAPHY[
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