Rüggeberg, Markus (2025) Long-Range Markerless Pose Estimation for Planetary Multi-Robot SLAM. Masterarbeit, Karlsruhe Institue of Technology.
![]() |
PDF
20MB |
Kurzfassung
Simultaneous Localization and Mapping (SLAM) is a key software component of rover systems to enable long-term autonomy in previously unknown settings. Multi-robot SLAM approaches, in contrast to single-agent solutions, rely on perceptual information from multiple networked robots, to produce a consistent representation of the environment in a shared and collaborative manner, with beneficial implications regarding accuracy, time efficiency, and redundancy. A key element of multi-robot SLAM is the capability of all robots in a team to observe each other with their respective perceptual inputs, and com- pute their relative poses, to join and better constrain their measurements in a global repre- sentation. Traditional means for this task rely on visual markers (e.g., AprilTags) mounted on the robots, which have limitations regarding detection range and environmental condi- tions, e.g. visibility, occlusion and reflections. We propose to complement the traditional, marker-based approach with markerless pose estimation (MPE), built on a deep-learning based object detection and pose estimation pipeline. The markerless pipeline is trained on synthetic data, and tested on both synthetic and real-world data as part of a multi-robot and multi-session visual SLAM system for a team of planetary robots. Under real-world conditions, the inclusion of our markerless pipeline reduces overall localization errors by 21% in an otherwise identical system.
elib-URL des Eintrags: | https://elib.dlr.de/215667/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Masterarbeit) | ||||||||||||
Titel: | Long-Range Markerless Pose Estimation for Planetary Multi-Robot SLAM | ||||||||||||
Autoren: |
| ||||||||||||
DLR-Supervisor: |
| ||||||||||||
Datum: | 2025 | ||||||||||||
Open Access: | Ja | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | SLAM, Robot detection, Pose Estimation | ||||||||||||
Institution: | Karlsruhe Institue of Technology | ||||||||||||
Abteilung: | Department of Computer Science | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Planetare Exploration | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||
Hinterlegt von: | Giubilato, Riccardo | ||||||||||||
Hinterlegt am: | 11 Aug 2025 08:54 | ||||||||||||
Letzte Änderung: | 11 Aug 2025 08:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags