elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Long-Range Markerless Pose Estimation for Planetary Multi-Robot SLAM

Rüggeberg, Markus (2025) Long-Range Markerless Pose Estimation for Planetary Multi-Robot SLAM. Masterarbeit, Karlsruhe Institue of Technology.

[img] PDF
20MB

Kurzfassung

Simultaneous Localization and Mapping (SLAM) is a key software component of rover systems to enable long-term autonomy in previously unknown settings. Multi-robot SLAM approaches, in contrast to single-agent solutions, rely on perceptual information from multiple networked robots, to produce a consistent representation of the environment in a shared and collaborative manner, with beneficial implications regarding accuracy, time efficiency, and redundancy. A key element of multi-robot SLAM is the capability of all robots in a team to observe each other with their respective perceptual inputs, and com- pute their relative poses, to join and better constrain their measurements in a global repre- sentation. Traditional means for this task rely on visual markers (e.g., AprilTags) mounted on the robots, which have limitations regarding detection range and environmental condi- tions, e.g. visibility, occlusion and reflections. We propose to complement the traditional, marker-based approach with markerless pose estimation (MPE), built on a deep-learning based object detection and pose estimation pipeline. The markerless pipeline is trained on synthetic data, and tested on both synthetic and real-world data as part of a multi-robot and multi-session visual SLAM system for a team of planetary robots. Under real-world conditions, the inclusion of our markerless pipeline reduces overall localization errors by 21% in an otherwise identical system.

elib-URL des Eintrags:https://elib.dlr.de/215667/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Long-Range Markerless Pose Estimation for Planetary Multi-Robot SLAM
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rüggeberg, MarkusKITNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorGiubilato, RiccardoRiccardo.Giubilato (at) dlr.deNICHT SPEZIFIZIERT
Thesis advisorTriebel, RudolphRudolph.Triebel (at) dlr.deNICHT SPEZIFIZIERT
Datum:2025
Open Access:Ja
Status:veröffentlicht
Stichwörter:SLAM, Robot detection, Pose Estimation
Institution:Karlsruhe Institue of Technology
Abteilung:Department of Computer Science
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Planetare Exploration
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition
Hinterlegt von: Giubilato, Riccardo
Hinterlegt am:11 Aug 2025 08:54
Letzte Änderung:11 Aug 2025 08:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.