
Long-Range Markerless Pose Estimation
for Planetary Multi-Robot SLAM

Master Thesis

of

Markus Rüggeberg

At the KIT Department of Computer Science
Institute for Anthropomatics and Robotics (IAR) -

Intelligent Robot Perception

First reviewer: Prof. Dr. rer. nat. habil. Rudolph Triebel
Second reviewer: Prof. Dr.-Ing. habil. Björn Hein
Advisor: Dr. Riccardo Giubilato

December 31st 2024 – July 31st 2025

KIT – The Research University in the Helmholtz Association www.kit.edu

Institute for Anthropomatics and Robotics (IAR) -
Intelligent Robot Perception
KIT Department of Computer Science
Karlsruhe Institute of Technology
Adenauerring 12
76131 Karlsruhe

Markus Rüggeberg
Willy-Andreas-Allee 1
76131 Karlsruhe
markus.rueggeberg@student.kit.edu

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, July 31st 2025

. .
Markus Rüggeberg

Thank you, Riccardo, for your instructions, advice, and assistance. Thank you, Leon W,
Leon M, and Gabriel, for proofreading. Last but not least, I thank my family and friends

for all the love and support!

Abstract

Long-Range Markerless Pose Estimation for Planetary
Multi-Robot SLAM

Simultaneous Localization and Mapping (SLAM) is a key software component of
rover systems to enable long-term autonomy in previously unknown settings. Multi-robot
SLAM approaches, in contrast to single-agent solutions, rely on perceptual information
from multiple networked robots, to produce a consistent representation of the environment
in a shared and collaborative manner, with beneficial implications regarding accuracy,
time efficiency, and redundancy. A key element of multi-robot SLAM is the capability of
all robots in a team to observe each other with their respective perceptual inputs, and com-
pute their relative poses, to join and better constrain their measurements in a global repre-
sentation. Traditional means for this task rely on visual markers (e.g., AprilTags) mounted
on the robots, which have limitations regarding detection range and environmental condi-
tions, e.g. visibility, occlusion and reflections. We propose to complement the traditional,
marker-based approach with markerless pose estimation (MPE), built on a deep-learning
based object detection and pose estimation pipeline. The markerless pipeline is trained on
synthetic data, and tested on both synthetic and real-world data as part of a multi-robot
and multi-session visual SLAM system for a team of planetary robots. Under real-world
conditions, the inclusion of our markerless pipeline reduces overall localization errors by
21% in an otherwise identical system.

Keywords: Robotics; Markerless; Pose Estinmation; Long-Range; Exploration; Lunar
Rover; Multi-Robot; Localization; Mapping, SLAM

vii

Zusammenfassung

Markerlose Posenschätzung über Weite Entfernungen für
Planetarisches Multi-Roboter SLAM

Simultane Lokalisierung und Kartierung (Simultaneous Localization and Mapping,
SLAM) ist eine wichtige Softwarekomponente von Rover-Systemen, um langfristige Au-
tonomie in zuvor unbekannten Umgebungen zu ermöglichen. Im Gegensatz zu SLAM-
Asätzen mit nur einem Roboter, stützen sich Multi-Robot-Ansätze mit mehreren Robo-
tern auf Wahrnehmungsinformationen von mehreren vernetzten Robotern, um eine kon-
sistente Repräsentationen der Umgebung auf eine gemeinsame und kollaborative Weise
zu erstellen, was sich vorteilhaft auf die Genauigkeit, die Zeiteffizienz und die Redun-
danz auswirkt. Ein Schlüsselpunkt von Multi-Robot-SLAM ist die Fähigkeit aller Robo-
ter in einem Team, sich gegenseitig mit ihren jeweiligen Wahrnehmungen zu beobach-
ten und ihre relativen Posen zueinander zu berechnen. Dadurch können die Messungen
der einzelnen Roboter in einer globalen Darstellung kombiniert und eingeschränkt wer-
den. Herkömmliche Methoden dazu beruhen auf visuellen Markern (z. B. AprilTags), die
an den Robotern befestigt werden. Diese Methoden haben jedoch Einschränkungen hin-
sichtlich der Reichweite und Umgebungseinflüsse, z.B. Sichtbarkeit, Verdeckung und Re-
flexionen. Wir schlagen vor, den traditionellen, markerbasierten Ansatz durch eine mar-
kerlose Posenschätzung (Markerless Pose Estimation, MPE) zu ergänzen, die auf einer
Deep-Learning basierten Objekterkennungs- und Posenschätzungspipeline aufbaut. Die
markerlose Pipeline wird mit synthetischen Daten trainiert und mit sowohl synthetischen
als auch realen Daten in einem visuellen Multi-Robot- und Multi-Session-SLAM-System
getestet. Die Tests befassen die Domände eines Teams planetarischer Erkundungsroboter.
Wir demonstrieren die Vorteile, die dieser Ansatz in Bezug auf die SLAM-Genauigkeit
und die Verkürzung der Dauer von Open-Loop-Navigationssequenzen bietet. Unter Echt-
Welt-Bedingungen reduziert die Zunahme unserer markerlosen Pipeline den gesamten
Lokalisierungsfehler um 21% gegenüber einem identischen System ohne unsere Kompo-
nente.

Stichwörter: Robotik; Markerlos; Posenschätzung; Weite Entfernungen; Erkundung; Mon-
drover; Multi-Roboter; Lokalisierung, Kartierung, SLAM

ix

Contents

Abstract vii

Zusammenfassung ix

1. Introduction 1
1.1. Motivation . 1
1.2. Approach . 2
1.3. Structure of this Thesis . 3

2. State of the Art 5
2.1. Planetary Robotics . 5
2.2. SLAM . 6
2.3. Markerless Pose Estimation . 6

3. Fundamentals 9
3.1. Robots . 9

3.1.1. Lander . 9
3.1.2. LRU . 10
3.1.3. LRU2 . 10

3.2. Poses and Transformations . 11
3.3. Graph-Based SLAM . 13
3.4. Tools and Frameworks . 13

3.4.1. Blender . 13
3.4.2. BlenderProc 2 . 14
3.4.3. OAISYS . 14
3.4.4. YOLO . 14
3.4.5. DensePose . 14
3.4.6. ROS 2 . 14

4. Methods 15
4.1. Dataset Generation . 15

4.1.1. CAD Models . 15
4.1.2. Specific Datasets . 16
4.1.3. Dataset Overview . 18

4.2. Markerless Vision Pipeline . 18
4.2.1. Object detection . 19
4.2.2. Detection Filtering . 19
4.2.3. Pose Estimation . 20

4.3. SLAM Integration . 21
4.3.1. SLAM Node Generation . 22
4.3.2. SLAM Pipeline . 23

4.4. System Overview . 24

xi

Contents

5. Implementation 27
5.1. Dataset Generation . 27

5.1.1. BlenderProc 2 . 27
5.1.2. OAISYS . 30
5.1.3. Combined . 32

5.2. Model Training . 32
5.3. Vision Pipeline . 33

5.3.1. Object Detection . 33
5.3.2. Detection Filtering . 34
5.3.3. Pose Estimation . 35

5.4. ROS2 Node . 36

6. Evaluation 39
6.1. Evaluation datasets . 39

6.1.1. Synthetic Test Data . 39
6.1.2. Real-World Test Data . 40

6.2. Evaluation Metrics . 41
6.2.1. Ground Truths . 41
6.2.2. Metric Definitions . 43

6.3. Evaluation Methods . 43
6.3.1. Synthetic Test Evaluation . 44
6.3.2. Real-World Test Evaluation . 44

7. Results 47
7.1. Synthetic Test Results . 47

7.1.1. BPROC_4K Results . 48
7.1.2. OAISYS_4K Results . 49
7.1.3. COMBINED_8K Results . 50
7.1.4. Summarized Results . 51
7.1.5. Model Selection . 51

7.2. Real-World Test Results . 52
7.2.1. Real-World Pose Estimation Results 52
7.2.2. Real-World SLAM Results . 59

8. Discussion 67
8.1. Pose Estimation Performance . 67
8.2. SLAM Performance . 69
8.3. Limitations . 69

9. Conclusion 71
9.1. Summary . 71
9.2. Outlook . 71

Bibliography 71

Appendix 79
A. SLAM Localization Trajectories . 79

A.1. Run 2 . 79
A.2. Run 3 . 84
A.3. Run 5 . 89

xii

Contents

List of Figures 96

List of Tables 97

List of Algorithms 99

xiii

1. Introduction

Markerless pose estimation (MPE) is a central problem in robotics and computer
vision. Wherever technical systems rely on vision for complex geometric information,
computer vision algorithms bridge the gap between what is seen and what can be inferred
about the world. Markerless vision approaches demonstrate strong performance for many
applications, such as object detection, pose estimation, classification and end-to-end re-
gression problems. Due to their versatility and robustness, they lend themselves to a wide
range of use cases. In multi-robot SLAM, markerless vision can aid in constraining pose
uncertainties and enhancing the available knowledge, in both an additive and a redundant
manner, thus furthering the goals of exploratory robot missions.

1.1. Motivation

The mission of space and planetary exploration has employed mobile robotics since
the beginnings of the field. In more than five decades since the emergence of the first
robotic space exploration vehicles, the technological disciplines involved have continu-
ously matured. Whereas the earliest concepts relied on remote control, advances in on-
board computing have led to the adoption of more autonomous control systems, enabling
exploratory agents to operate more autonomously, i.e., without human intervention for
increasingly prolonged intervals [24]. Today’s planetary rovers require a certain level of
automation to reliably and safely achieve the scientific goals of their missions [17]. In
this sense, autonomous, semi-autonomous, and interconnected robot teams use their col-
lective perceptive and cognitive abilities collaboratively to tackle navigation, exploration,
and sampling tasks without the need for sustained operator input [44].

The tasks of navigation and exploration are inextricably linked with the concepts of
mapping (creating a model of the surrounding environment) and localization (determining
one’s own place within the environment). These interdependent problems together com-
prise the Simultaneous Localization And Mapping (SLAM) problem, which asks how a
robot can incrementally build a consistent map while, at the same time, determining its
location relative to this map. A solution to the SLAM problem would be, in the views
of some, the "holy grail" of mobile robotics, facilitating true robot autonomy [14]. From
a conceptual and mathematical viewpoint, SLAM has been solved in different formula-
tions for many years. However, many issues remain in the practical realization of general
SLAM solutions for specific applications. In exploratory robotics, the challenges associ-
ated with the synthesis, interpretation, and use of perceptual knowledge in SLAM algo-
rithms can often impede the development of a concrete system that works optimally in a
specific context.

In the graphical SLAM formulation, where graph nodes represent agents or land-
marks, and vertices represent measurements, the main challenge concerns information

1

1. Introduction

denseness and knowledge sparseness. Although the total amount of perceptual informa-
tion hypothetically available to a system realizing a SLAM solution is large (information
denseness), that information is not immediately usable. The selection, synthesis, and
preparation of useful knowledge is a difficult process that involves many non-trivial con-
siderations and, ultimately, techniques that craft usable constraints from raw data. As
these techniques are still being developed, the amount of knowledge that is actually be-
ing used to solve the SLAM problem is small (knowledge sparseness). To address the
challenge of knowledge sparseness, multimodal perceptive approaches are needed. As
the information from a single modality can be imprecise or unavailable in certain situ-
ations, the inclusion of complementary multimodal sensory input can help mitigate the
weaknesses of specific modalities, leading to greater robustness and redundancy.

In the rover application, the optical modalities include vision [44] and non-vision
perception, such as LIDAR [23]. While LIDAR is used to scan point clouds of the en-
vironmental surfaces, vision allows for a more far-reaching and information-dense input.
The visual sense can be used to detect and localize landmarks, manipulable objects, and
other robots from a camera image. Traditionally, this has been done through the employ-
ment of marker-based vision, where hand-crafted fiducial markers, such as AprilTags, are
affixed to and around the object and region of interest. Whenever a detection and local-
ization of a marker relative to the camera takes place, the known camera pose and the
pose of the marker relative to the object of interest allow for a new constraint between
the robot and the object to be added to the SLAM knowledge. Marker-based vision is
fast, precise, and robust against false positive detections [36] [51]. However, in the case
of digitally encoded markers such as AprilTags, the detection rate is highly dependent on
the proximity to the markers and the marker size [28]. Practical concerns restrict the size
of the markers that can be used in exploratory missions, as the physical robots must not
be confined in their movement and performance of functions. Furthermore, the detection
rate of digitally encoded markers is affected by lighting conditions, specifically reflection
and exposure, and, trivially, by the need to face the printed side of the markers. Due to
these limitations, a system fully reliant on marker-based vision can be starved of percep-
tive knowledge during segments in which the robot is far away from landmarks, objects,
and other robots, leading to long open-loop navigation sequences with increasing drifts.
For this reason, the use of markerless vision is encouraged.

1.2. Approach

To take full advantage of the visual perception modality, we aim to extend the knowl-
edge acquisition capabilities of an existing rover system, realizing a SLAM solution, by
implementing a markerless vision subsystem. Specifically, we propose a markerless vi-
sion pipeline consisting of three stages: Markerless object detection, detection filtering,
and markerless pose estimation. The markerless vision pipeline uses existing visual data
in the form of a camera image stream to produce poses of landmarks and other robots, and
is integrated into the existing SLAM pipeline. Unlike marker-based vision, this approach
has the potential to provide pose estimates at far distances, in harsher lighting conditions,
and from a wider range of viewing angles. Using both marker-based and markerless vi-
sion in congruence, the system can capitalize on the benefits of both types of vision, thus
adding to the total SLAM knowledge.

2

1.3. Structure of this Thesis

1.3. Structure of this Thesis

In this thesis, we document the development, implementation, and evaluation of the
proposed markerless vision subsystem. We begin by referencing previous work in the
area as it relates to our contribution. We then introduce the fundamental concepts that are
relevant to this document. Next, we cover the methods that were developed to solve mark-
erless pose estimation and realize our proposal. The implementation of these methods is
then given by detailing the chosen software tools and providing select implementation
details. Afterward, the evaluation process used to validate our implemented subsystem
is defined and the results of that evaluation process are presented. The results are subse-
quently discussed and contextualized. Lastly, we summarize our work and look ahead to
future steps that should be taken beyond the scope of this thesis.

3

2. State of the Art

In this part, we cover previous contributions related to our work. We begin with an
overview of historical and current planetary robot technology. We then review relevant
work on SLAM solutions. Finally, we examine the current state of object detection and
pose estimation techniques.

2.1. Planetary Robotics

Numerous rover designs have been deployed in planetary exploration missions [24].
In 1970, the first successfully deployed rover, Lunokhod 1 [24] was a large-sized remote-
controlled lunar vehicle capable of recording and transmitting video and images to Earth
and served as a mobile laboratory for chemical soil composition. It was shortly fol-
lowed by the Lunar Roving Vehicle [46], also known as "Moon Buggy", a crewed ve-
hicle used between 1971 and 1972. A leap in robot technology was made in 1997 with
the lightweight, semi-autonomous Mars rover Sojourner [24], equipped with stereo vi-
sion for 3D environmental mapping. It was operated with a hybrid system of real-time
telecommand and full autonomy controlled by the accompanying lander. The vehicle fol-
lowed command sequences set by a driver on Earth to explore within 30m of the landing
platform. In 2004, Spirit and Opportunity were deployed on Mars [12], whose on-board
computers and software enabled greater autonomy and allowed the rover team to perform
daily set tasks without the constant need to wait several minutes for immediate Earth sig-
nal [24]. Recent deployments are Perseverance and Ingenuity in 2021. Perseverance’s
vision-based goal selection, path planning, and navigation have allowed it to drive close
to 700m continuously without human input [48], and to travel more than 36km in total
as of today [10]. Ingenutiy was a lightweight drone and the first aircraft to achieve con-
trolled flight on an extraterrestrial planet [25]. It was capable of fully autonomous flight
and real-time flight corrections based on visual and IMU-based navigation and control.

The advantages of autonomous and semi-autonomous control are not limited to Mars
exploration. The lunar rover Yutu [40], deployed in 2013 used a hybrid system of ground
remote control aided by intelligent obstacle avoidance based on object detection [11]. Its
successor Yutu-2 had improved capabilities regarding stereo vision based terrain recon-
struction and local path planning. Empowered with greater autonomy, Yutu-2 became the
first rover to be deployed to the lunar farside when it landed in 2019 [50], and is still
operational. In 2024, Jinchang, a "mini-rover" was deployed to the farside of the moon as
part of the Change-6 mission [5]. Its learned photographic decision-making [22] enabled
the selection of optimal camera angles, exemplifying active vision.

Many conceptual systems have been developed and tested on Earth to accelerate the
research in autonomous rover capabilities for future space missions. Recent examples
include Codi [37], a European rover with autonomous navigation and sample collec-
tion, and LRU [52], a lightweight rover built for autonomous exploration. The ARCHES

5

2. State of the Art

Space-Analogue Demonstration Mission [44] deployed LRU, together with its twin sys-
tem LRU2, a lander unit and ARDEA, an autonomous drone on Mount Etna, to gather
space-analogue data for the development of multi-robot task autonomy and specifically,
multi-robot SLAM.

2.2. SLAM

The SLAM problem has been known and formally stated since the 1990s. Leonard
and Durrant-Whyte [29] define the problem as "long-term globally referenced position es-
timation without a priori information". They proposed an Extended Kalman Filter (EKF)
based localization algorithm to solve the SLAM problem under certain conditions. Mon-
temerlo and Thrun presented FastSLAM [32], an efficient recursive algorithm integrating
particle filter and Kalman filter representations, with far lower time complexity than previ-
ous Kalman Filter based approaches, thereby laying the groundwork for real-time SLAM
solutions that scale to large environments. In [31], Montemerlo et al. published Fast-
SLAM2.0, which was an improvement in terms of efficiency and provable convergence.
Grisetti and Stachniss[19] presented a Grid Mapping (GMapping) algorithm that outper-
formed others in terms of real-world robustness and performed well even with a limited
number of particles, i.e. state hypotheses. Incremental smoothing and a Bayes tree prob-
ability density representation were introduced with iSAM [26] and iSAM2 [27], which
outperformed contemporary algorithms. Modern visual SLAM approaches, such as the
ORB SLAM and its evolutions [34] [35] [9] are versatile, capable, and widely used SLAM
systems. In [43], Schuster et al. propose a stereo vision based 6D multi-robot SLAM sys-
tem with decoupled filtering on each robot, specialized submap matching, and distributed
high-frequency and high-bandwidth processing. The challenges associated with outdoor
SLAM in unstructured environments, such as those encountered in planetary missions,
are outlined by Giubilato et al. [18], where the multimodal utilization of both visual and
LIDAR technology is encouraged. In [44] and [7], research teams at DLR (Deutsches
Zentrum für Luft- und Raumfahrt, German Aerospace Center) conducted the ARCHES
mission, a space-analogue mission on Mount Etna to capture large multi-robot outdoor
datasets in a quasi-planetary environment. These datasets continue to aid in the develop-
ment of multi-robot and multi-modal SLAM systems.

2.3. Markerless Pose Estimation

Computer vision is an important prerequisite for visual SLAM. To develop markerless
visual SLAM, markerless pose estimation is required. One approach [45], uses a Denois-
ing Autoencoder that is trained on simulated views of a known object from a spread of
viewing angles. It learns implicit embeddings of object orientation that can be looked
up during runtime to determine the approximate current rotation. The work in [6] in-
troduces a fast system that produces both 2D detections and 6D pose estimations. It is
based on the extraction of sparse feature points from the image, that are projected via a
PnP (Perspective-n-Point) algorithm to obtain the object pose. A more recent contribu-
tion presents EagerNet [47], a versatile pose estimator that uses dense feature extraction
and is highly robust against extreme visual conditions. It predicts normalized 3D object

6

2.3. Markerless Pose Estimation

coordinates, as well as a pixel-wise coordinate confidence. Via PnP, the densely esti-
mated features are converted to a likely 6D pose. EagerNet’s successor DensePose, which
remains unpublished, adds a learned PnP algorithm to the system.

7

3. Fundamentals

This chapter introduces the fundamental concepts relevant for our work and this the-
sis. First, we describe the configuration of our multiple robots, as it pertains to the ex-
ploratory multi-robot mission of our use case. Second, we discuss the concepts of poses
and transformations as we refer to them throughout the thesis. Third, we explain the
SLAM solution that we rely on to make our contribution. Last, we give information about
the software tools and frameworks that were used for the development.

3.1. Robots

In the ARCHES mission [44], four robots are deployed: the lander module, the two
rovers LRU and LRU2, and the drone ARDEA. Figure 3.1 shows the four robots at the
deployment site on Mount Etna. For the main part of this work, we only regard the lander,
LRU and LRU2, though our proposal can later be extended to include ARDEA and other
robots.

Figure 3.1.: Lander, LRU, LRU2, and ARDEA on Mount Etna in 2022 [1]

3.1.1. Lander

The lander module is a static, generic four-legged base station built to imitate the
common moon lander design. It serves as a quasi-global reference frame in which the
other robots operate. As the current stand-in does not possess any sensors, actuators, or
cognition, it is not a true robot in the strict sense. However, we will treat it as such and
refer to it as a passive robot of the multi-robot mission, differentiating it from the true,
active robot. Figure 3.2 shows the lander on the deployment site.

9

3. Fundamentals

Figure 3.2.: Lander module on Mount Etna in 2022 [2]

A challenge towards the markerless pose estimation of the lander is its strong rota-
tional symmetries. Apart from superficial features, such as painted text, and the configu-
ration of the three side-mounted ladders, it possesses four degrees of rotational symmetry
around the yaw axis, which is considered for the lander model, visual training, and SLAM
integration.

3.1.2. LRU

The Lightweight Rover Unit (LRU), shown in Figure 3.3, is a four-wheeled mobile
robot equipped with IMU (Inertial Measurement Unit) sensors and mono and stereo cam-
eras mounted on a 2-DOF-articulable head. LRU possesses weak rotational symmetries.
Apart from the camera head and mast, there are two degrees of rotational symmetry of the
rover body around the yaw axis. The symmetries are less pronounced than those of the
lander. However, we keep them in mind when developing our methodology.

3.1.3. LRU2

The rover LRU2 is based on LRU, the main differences being an updated camera head
and a robotic arm for object manipulation and sampling. Figure 3.4 shows LRU2 taking a
ground sample during the ARCHES mission. Apart from the camera head, mast, arm and
cargo rack, LRU2 is visually similar to LRU and possesses the same weak symmetries, a
fact that we exploit in the development of our methods.

10

3.2. Poses and Transformations

Figure 3.3.: LRU on Mount Etna in 2022 [3]

3.2. Poses and Transformations

In the context of robotics, a pose refers to the configuration of both position and orien-
tation, describing a state in 6 DOF. Poses of robots, robot links, objects, and landmarks are
defined in a specific reference frame. A pose can be represented by a rigid transformation,
where a rotational matrix R ∈ SO(3) ⊂ R3×3 and a translational vector t ∈ R3 compose
a transformation matrix T ∈ SE(3) ⊂ R4×4. We define the composition T = T (R, t)
and, by implication, the decomposition R, t = R(T), t(T):

T = T (R, t) =

[
R t

0 0 0 1

]
(3.1)

We refer to a pose T as the pose represented by the transformation T. The transfer of
a pose Tf1,a of the object a in the frame f1 to another frame f2 is done by multiplying the
pose with the transformation Tf2,f1 of f1 relative to f2:

Tf2,a = Tf2,f1 Tf1,a (3.2)

Given two poses Tf,a and Tf,b of objects a and b in the frame f , the pose Ta,b of b
relative to a is defined as follows:

Ta,b = T−1
f,a Tf,b (3.3)

A point pf1 in the frame f1 can be transferred to another frame f2 by multiplication
with the transformation Tf2,f1 of f2 relative to f1:[

pf2

1

]
= Tf2,f1

[
pf1

1

]
(3.4)

11

3. Fundamentals

Figure 3.4.: LRU2 taking a ground sample on Mount Etna in 2022 [4]

Given two sets of corresponding points {pi}Ni=1 and {qi}Ni=1 in Rn, where each point
pair describes a single point in two different reference frames, the Kabsch-Umeyama
Algorithm computes the optimal rigid transformation matrix T ∈ SE(n), such that the
transformed set {Tpi} best aligns with {qi} in the least-squares sense.

Algorithm 1 Kabsch-Umeyama Algorithm

Require: Corresponding point sets P,Q ∈ R3×N

Ensure: Optimal rigid transformation T ∈ SE(3)

1: Compute the centroids: p̄ = 1
N

∑N
i=1 pi, q̄ = 1

N

∑N
i=1 qi

2: Center the point sets: P′ = P− p̄, Q′ = Q− q̄

3: Compute the cross-covariance matrix: H = P′Q′⊤

4: Compute the singular value decomposition: H = UΣV⊤

5: Compute rotation: R = VSU⊤

where S = diag(1, . . . , 1, det(VU⊤))

6: Compute translation: t = q̄−Rp̄

7: Compose transformation: T = T (R, t)

8: return T

We use the Kabsch-Umeyama algorithm in our evaluation process to align measured
ground truth trajectories to estimated trajectories based on a subset of chosen point pair
correspondences.

12

3.3. Graph-Based SLAM

3.3. Graph-Based SLAM

Simultaneous Localization and Mapping (SLAM) is the central problem in our multi-
robot application. The existing system[43] works with a graph-based SLAM approach,
where the poses xi,k of all robots i at different time steps k and the map elements (land-
marks) are represented as nodes in a graph [20]. The edges between nodes represent
spatial constraints obtained indirectly from robot control inputs (odometry), or from di-
rect measurement (e.g. marker-based, markerless) of the relative transformation between
object poses (observations). Each edge encodes the transformation and the uncertainty
(covariance) of the observation.

Given measurements Z0:k, control inputs U0:k, and prior knowledge xo, the goal is
to estimate the probability distribution of the state at all times 0, ..., k, comprised of the
robot poses X0:k and landmark poses m:

P (X0:k,m | Z0:k,U0:k,x0) (3.5)

For this, we define a non-linear least-squares optimization problem:

eij (xi,xj) = zij − ẑij (xi,xj)

F(x) =
∑

⟨i,j⟩∈C

eTijΩijeij︸ ︷︷ ︸
Fij

x∗ = argmin
x

F(x)

(3.6)

where:

• C is the set of edges (constraints) in the graph,

• zij is the observed relative transformation between nodes (robots) i and j,

• ẑij is the predicted relative transformation between nodes (robots) i and j,

• Ωij is the information matrix (inverse of the covariance matrix) representing the
confidence in the measurement zij ,

This optimization problem is solved using an iterative optimization algorithm, in our
case, iSAM2 [27]. For the development work in this thesis, the SLAM solution is given
and will be extended through our markerless vision subsystem.

3.4. Tools and Frameworks

For the development and implementation of our work, we made use of various soft-
ware tools and frameworks, which we introduce here.

3.4.1. Blender

Blender is an open-source 3D computer graphics software that is one of the stan-
dard environments used in scientific and commercial applications [16]. We use it for 3D
modeling and editing of robot CAD files to prepare the generation of synthetic datasets.

13

3. Fundamentals

3.4.2. BlenderProc 2

BlenderProc 2 is a procedural Blender pipeline developed at DLR that can render re-
alistic images for the training of neural networks [13]. It automates virtual scene creation
and produces labeled datasets in hdf5 [15], BOP [21] or COCO [8] formats. We use it to
generate data sets to train and evaluate our visual models.

3.4.3. OAISYS

OAISYS (Outdoor Artificial Intelligent SYstems Simulator) is a simulation software
for outdoor environments, developed at DLR, and specifically designed for the needs
of visual systems in planetary robotics [33]. OAISYS produces photorealistic synthetic
images with semantic labeling in hdf5 and COCO formats. As part of our work, we
extended the functionality of OAISYS by adding BOP support.

3.4.4. YOLO

YOLO (You Only Look Once) is a series of CNN (Convolutional Neural Network)
-based real-time object detection systems in computer vision [39]. YOLO requires only
one forward pass through the neural network to find object instances and predict bounding
boxes and class probabilities. YOLO versions 1-3 were incrementally developed by the
original researchers. Subsequent versions, 4 and later, were published by other teams
and further improved on features and performance. We use YOLOv7 [49] as part of our
markerless vision pipeline in the object detection stage.

3.4.5. DensePose

DensePose is a markerless 6D pose estimation technique currently being developed at
DLR. It improves on EagerNet, a precursor system published by the same researchers [47].
The main principle is the prediction and use of densely estimated correspondences in input
images. We use DensePose as part of our markerless vision pipeline in the pose estimation
stage. We further elaborate on the specifics of DensePose in subsection 4.2.3.

3.4.6. ROS 2

ROS (Robot Operating System) is an open-source software framework for the imple-
mentation and integration of robot applications [38] [42]. It provides hardware abstrac-
tion, system APIs, various robotics libraries, visualizers, a messaging system, and more.
In ROS, a network of software modules (ROS nodes) runs on a heterogeneous compute
cluster, communicating with each other via messages (ROS messages) sent through dedi-
cated data channels (ROS topics). ROS 2 was redesigned from the ground up to improve
upon ROS and to adapt to the evolving demands of the domain [30] [41]. We use ROS 2
to integrate our markerless vision pipeline into the existing robot system.

14

4. Methods

This chapter documents all of our methodological developments and the considera-
tions that were important in solving the problems issued in this work. First, we describe
the methods for generating synthetic datasets that are necessary to train a learning-based
visual pipeline. We then present the main subsystem, the visual pipeline, and detail its
components. Lastly, we describe how the visual pipeline is integrated into the larger
SLAM system.

4.1. Dataset Generation

This section covers the generation of synthetic training data for training markerless
object detection and pose estimation systems. We describe our process and the tools we
used, as well as the considerations and decisions made, and the difficulties faced in this
process. We built 3 different training sets for the purpose of comparing their performance
and facilitating a discussion about the ways to improve training data for further develop-
ment.

4.1.1. CAD Models

In our use case, the multi-robot SLAM handles 3 robots. Two active robots, LRU and
LRU2 and one passive robot, the lander, which serves as a static landmark in our use case.
We have access to static STL files of the lander and LRU, and to a URDF model of LRU2.
The three models are shown in Figure 4.1.

(a) Lander (b) LRU (c) LRU2

Figure 4.1.: CAD models of lander, LRU, and LRU2.

15

4. Methods

The active robots are each expected to perceive the other active robot and the lander.
LRU and LRU2 have similar kinematic structures and surfaces, the main difference being
the shape of the respective heads. In order to streamline the training and later deployment
of the detection and pose estimation systems, we reduce the number of perceivable object
classes from 3 to 2, by treating LRU and LRU2 as variations of the same object class. By
truncating the head portion from LRU, we create a CAD model of the common portions
of LRU and LRU2. This new headless LRU model is purposely ambiguous towards the
distinction between the two active robots and represents their common object class. The
CAD models are then colorized by polygon-wise assignment of surface colors, reflection,
and roughness values and saved in OBJ format. The truncated and colorized CAD models
are shown in Figure 4.2.

(a) Lander (b) Headless LRU

Figure 4.2.: Truncated and colorized CAD models of lander and headless LRU.

4.1.2. Specific Datasets

From the colorized CAD files, we create multiple datasets using two dataset creation
methods: BlenderProc and OAISYS. The data created by the two methods possess dif-
ferent properties. Here, we describe the important steps and the resulting data of each
method.

4.1.2.1. BlenderProc 2

The first dataset creation method is based on BlenderProc 2. This method allows us
to generate a BOP [21] dataset with semi-realistic visuals and annotations of the robot
models. A scene in BlenderProc 2 consists of a random 360° background image, the
robot models, an ambient lighting source, a surface light, and between 5 and 20 AprilTags
as distractor objects. Per scene, there are 25 samples rendered from different camera
placements. With this setup, we create our first dataset of 4000 samples: BPROC_4K.
Figure 4.3 shows some exemplary samples.

16

4.1. Dataset Generation

Figure 4.3.: Example images from BPROC_4K.

4.1.2.2. OAISYS

Our second dataset creation method is based on OAISYS. This method allows us to
generate a dataset with photorealistic visuals and annotations of the robot models. The
scene creation in OAISYS starts with a textured terrain surface, that is procedurally gener-
ated from one of a list of terrain presets. The robots models are dropped in the scene, their
interaction with the terrain and each other simulated by Blender’s rigid body physics en-
gine for 100 physics frames, before freezing the simulation. The scene is populated with
rocks as distractor objects and lit with a physics based lighting scheme, incorporating ran-
dom sun angles and intensities, air densities, and dust levels. Per scene, one sample is
rendered by ray-tracing from a random camera position near the ground surface, simulat-
ing a typical camera position of LRU or LRU2 in the field. With this setup, we create our
second dataset of 4000 samples: OAISYS_4K. Figure 4.4 shows some exemplary samples.

4.1.2.3. Combined

The samples of the two previous datasets differ strongly in levels of realism, distribu-
tions of camera and object poses, visual conditions, and distractor objects. Our goal is to
train visual systems that generalize well to many situations in our use case, and even to
other similar use cases. To achieve greater generalization, we created a third data set by
merging all 8000 samples from both previous datasets: COMBINED_8K.

17

4. Methods

Figure 4.4.: Example images from OAISYS_4K.

4.1.3. Dataset Overview

Table 4.1 lists the three synthetic datasets that we used to train visual systems. The
same methods were used to generate test sets for evaluating the visual systems, which we
explain in detail in section 6.1.

Table 4.1.: Synthetic Training Sets

Set Name # Scenes # Samples Observed Robots Distractors Distance

BPROC_4K 160 4000
Lander,

headless LRU AprilTags 2m – 20m

OAISYS_4K 4000 4000
Lander,

headless LRU rocks 2m – 20m

COMBINED_8K 4160 8000
Lander,

headless LRU
AprilTags,

rocks 2m – 20m

4.2. Markerless Vision Pipeline

The markerless visual pipeline is the core of the system. Its purpose is to estimate the
poses of perceived robots from the camera input. The stages of the pipeline are a series of
modular vision components, which we will present now.

18

4.2. Markerless Vision Pipeline

4.2.1. Object detection

The object detection component of the visual pipeline finds instances of the relevant
object classes in camera images. It employs YOLOv7, a state-of-the-art real-time object
detector. During inference, an RGB or grayscale image that may contain no object in-
stances, instances of one class, or instances of both classes, is fed into the object detection
subsystem. Since LRU can only perceive the lander and LRU2, and LRU2 can only per-
ceive the lander and LRU, we assume that the input image contains at most one object of
class LRU. The same trained YOLOv7 model runs on both active robots. In the case of a
lander class detection, the identity of the perceived robot is clearly the lander. In the case
of an LRU class detection, the detected robot could be either LRU or LRU2, since both
are represented by the same class. The identity of the perceived robot is determined later
by the context of which active robot perceived it.

The YOLOv7 model is trained from a training set in BOP format with the two spec-
ified class labels: "lander" and "lru". Each object detection comes with a bounding box,
class label, and confidence value. The output of the object detection stage is a list of these
labeled bounding boxes inside the image. The detection output and the original input
image are sent to the next pipeline stage.

4.2.2. Detection Filtering

The detection filtering component of the visual pipeline lies between object detection
and pose estimation. It applies a series of modular filters to the available detections to
ensure that only high-quality information is passed to the pose estimation stage. The
filters are chosen with our specific object classes in mind and parameterized on the basis
of experience with the system.

4.2.2.1. Confidence Filter

The first filter is the detection-wise confidence filter that rejects detections below a
set confidence threshold. Our experience shows that a good threshold value lies between
0.970 and 0.985 for a well-trained model.

4.2.2.2. Best-Detection Filter

Afterward, a best-detection filter is applied, which accepts only the most confident
detection per class. Since we assume the input image to contain at most one object of
the lander class and at most one object of the LRU class, the filter eliminates redundant
detections and high-confidence false positives.

4.2.2.3. Box-Ratio Filter

Third, a box-ratio filter is applied. The object of both object classes are relatively
compact, which implies that, from most perspectives, their bounding boxes are expected
to have roughly square proportions, i.e. the ratio of box height to box width should be

19

4. Methods

approximately 1. Therefore, the box ratio of a detection can serve as a quality indicator,
with ratios close to 1 indicating good detections and very large or very small ratios in-
dicating bad detection, where the object is cut off by the image borders or occluded to
an unacceptable degree. Given a set threshold for acceptable box ratios r ∈ [1,∞), a
detection is only accepted if it satisfies the following condition:

1

r
≤ box height

box width
≤ r (4.1)

In our experience, a box-ratio threshold between 1.5 and 2.0 performs well.

4.2.2.4. Border-Contact Filter

The pose estimation component can only perform well if enough visual information is
available. When an object in the input image is cut off by the image borders, the bounding
box of that object detection will contain parts of the object that are untypically aligned.
If the object is cut off to a similar extent by multiple image borders, the detection may
appear square, thus passing the box-ratio filter, but still be unwanted. To handle this,
we use a Border-Contact Filter, which rejects detections based on the number of image
borders touched. Given a threshold for the acceptable number of border contacts b ∈ N, a
detection is only accepted if it satisfies the condition:

border contacts ≤ b (4.2)

Choosing b = 1 border contacts in congruence with the box-ratio filter ensures that
detections with slight visual losses to one image border are still accepted, while detections
with strong visual losses to one or more image borders are rejected.

4.2.3. Pose Estimation

The pose estimation component of the visual pipeline estimates the 6D poses of de-
tected objects in a camera image. The input for the pose estimation component is an
RGB or grayscale image, along with a filtered list of object detections, bounding boxes,
and labels. The following is a step-by-step explanation of the processes inside the pose
estimation component.

4.2.3.1. Preprocessing

The input image and the list of detections shall be split into singular problem instances
and preprocessed into a suitable format for the elemental pose estimators. To achieve this,
for each detection, a segment is cropped from the image according to the bounding box.
The segment is then resized and expanded to a standard size and aspect ratio to fit the input
size of the trained models in the next step. Depending on the detected label, the image
segment is passed to the class-specific pose estimator model that is trained to handle the
object class associated with that label.

20

4.3. SLAM Integration

4.2.3.2. Dense Pixel-Wise Feature Estimation

The class-specific pose estimator models employ DensePose, a real-time markerless
pose estimator developed at DLR. The following is a description of the working principles
of DensePose. The main part of DensePose, its pixel-wise coordinate estimation, is de-
fined by the titular property: density. As opposed to sparse systems, which estimate poses
from a small number of characteristic point pairings between image and object space,
DensePose estimates poses from a large number of point pairs that densely populate the
dual spaces. To obtain the dense point pairs, a CNN (Convolutional Neural Network)
architecture estimates features for every pixel in the image segment. The estimated pixel-
wise features are:

• Visible segment mask

• Pixel-wise normalized 3D object coordinates

• Pixel-wise coordinate confidence

• Pixel-wise mesh zone segmentation

To simulate harsh visual conditions, the input is augmented during training by adding
random noise, partial occlusions, and color degradation. This leads to greater robustness
and allows the models to perform reliably well on non-augmented input during inference.
An example of the augmented input and pixel-wise estimated features during training is
shown in Figure 4.5.

4.2.3.3. Dense Point Pair Set Generation

To obtain a dense set of point pairings, the pixel-wise estimated features from the
CNN are combined in the following way: The normalized object coordinates are masked
with the image segment mask and annotated with the coordinate confidence. The pixel
coordinates are then converted from image segment coordinates into image coordinates
relative to the original input image. The normalized object coordinates are un-normalized.
Each masked pixel output by the CNN then represents a confidence-labeled point pair of
image and object coordinates.

4.2.3.4. Learned Projection Algorithm

The obtained dense point pair set serves as input for a learned projection algorithm,
which solves the PnP (Perspective-n-Point) problem. From the dense point pair set and
the known camera matrix, the learned projection algorithm computes the most likely ob-
ject pose in camera frame while incorporating the submesh zone segmentation to handle
symmetries and rejecting outlier information using the confidence labels.

4.3. SLAM Integration

Until now, the markerless pose estimation output by the visual pipeline pertains to
object poses in camera frame. In order to integrate the visual pipeline into the SLAM
system and populate the SLAM knowledge graph, the estimated object poses must be
extended into SLAM nodes, before sending the SLAM nodes to the SLAM pipeline.

21

4. Methods

Figure 4.5.: Example input segments and estimated features. TOP TO BOTTOM:
Augmented input segment, estimated mask, target mask, estimated normalized

coordinates, target normalized coordinates, estimated mesh zone segmentation, target
mesh zone segmentation.

4.3.1. SLAM Node Generation

The output from the visual pipeline is a list of estimated poses, at most one per per-
ceived object label. Each estimated pose is processed independently. Given a markerless
pose estimation with label l, the perceived robot r is decided by context of which active
observing robot o perceives it:

r =


Lander
LRU
LRU2

if l is

′′lander′′
′′lru′′

′′lru′′
and o is LRU2

LRU


Given a markerless pose estimate T̂co,r of a robot r by the observing robot o in camera

frame co, the same pose in robot frame o is defined as:

T̂o,r = To,co T̂co,r (4.3)

with the known camera pose To,co queried from the robot system.

22

4.3. SLAM Integration

The 6D covariance matrix Ĉco of pose T̂o,r in the camera frame co is estimated using
the following affine heuristic of linear and constant parts:

t = t(T̂co,r)

d = |t|

σc0 = d


ax
ay
az
0
0
0

+


br
br
br
σα

σβ

σγ


varc0 = σc0 ⊙ σc0

Ĉco = diag(varc0)

(4.4)

with the predefined axis-wise translational uncertainty coefficients ai, the constant trans-
lational standard deviation br and the constant angle-wise rotational standard deviations
σj .

The linear part is factorized with the observed distance d, as the markerless pose
estimation (MPE) for distant observations is less accurate than for close observations. We
chose µx = µy = 0.025 and µz = 0.05, as the MPE is significantly more accurate in the
directions parallel to the image plane than in the direction normal to the image plane.

The constant component depends on the observed robot. We chose bLander = 0.1
and bLRU = bLRU2 = 0.05, as the MPE at close ranges remains less accurate for lander
observations than for rover observations. The constant angle-wise rotational standard de-
viations are chosen as σα = σβ = σγ = 10°. In future iterations, the estimated covariance
will not use fixed valued, but instead parameters derived from statistical analysis for a
more mathematically accurate model. Especially the uncertainty of the yaw angle, due to
rotational symmetries of the robots, should be studied and represented in the observation.

The covariance Ĉr in the robot frame r is then obtained by applying a given non-linear
transformation to it, which aims to represent the respective component-wise uncertainties
while also avoiding singularities and numerical instability. The given non-liner transfor-
mation is the same for markerless observations as it is for tag observations. The markerless
robot observation Oo,r containing the pose and covariance is sent to the SLAM pipeline
as a SLAM node:

Oo,r = (T̂o,r , Ĉr) (4.5)

4.3.2. SLAM Pipeline

The SLAM nodes are processed by the existing SLAM pipeline, which was devel-
oped prior to this thesis. SLAM nodes originating from markerless pose estimations con-
tain markerless robot observations, SLAM nodes originating from tag pose estimations
contain tag robot observations. Both types of SLAM nodes are treated analogously: Each
SLAM node is added to the knowledge graph, which contains the multimodal knowl-
edge relevant to localization and mapping. The SLAM pipeline then provides continuous
localization and mapping output, which is optimized with every added observation.

23

4. Methods

4.4. System Overview

Figure 4.6 shows a schematic overview of the system architecture, with the markerless
vision components and the information flow through the vision pipeline and the SLAM
system.

24

4.4. System Overview

Vision Pipeline
Object Detection

Detection Filtering

Pose Estimation

Robotic System
Visual Input

Camera Image

SLAM Node

Localization
and Mapping

Detections

Filtered Detections

Image Segment Image Segment

Estimated Pose Estimated Pose

Camera

YOLOv7

Confidence Filter

Best-Detection Filter

Box-Ratio Filter

Border-Contact Filter

Preprocessing

Lander DensePose LRU DensePose

SLAM Node Generation

SLAM Pipeline

Figure 4.6.: System architecture. BLUE: Object detection stage,
PURPLE: Detection filtering stage, RED: Pose estimation stage,

GREEN: Information flow.

25

5. Implementation

In this chapter, we discuss the implementation of the methods presented in chapter 4.
We start by describing the implementation of the dataset generation methods. We briefly
touch on the training setup for the vision models. Then, we discuss the implementation
of the various visual pipeline components. Finally, we show the implementation of the
ROS2 node, which integrates the visual pipeline into the SLAM system. Throughout this
chapter, we explain our process and the tools used for each step. We also show important
parts of the written code to provide further information about the functional aspects and
ensure reproducibility of our work.

5.1. Dataset Generation

The training datasets were generated using open-source software extended by cus-
tom scripts. We here outline the implementations steps for creating the BlenderProc 2,
OAISYS, and Combined datasets.

5.1.1. BlenderProc 2

For generating the BlenderProc 2 dataset, we used the wrapper TrainingToolkit. The
custom rendering script render_detector_data_flying_with_tags.py com-
bines the functionalities of render_detector_data_flying.py and render_
detector_data_random.py. It loads the object models and distractor AprilTags
into the scenes and renders the samples:

1 ...
2 # Load all objects
3 target_bop_objs = load_objs(cfg=cfg)
4 ...
5
6 # Create and render n scenes
7 for i in range(cfg.DETECTOR_DATA.NUM_SCENES):
8
9 # Set a hdri as background

10 hdri = np.random.choice(glob.glob(os.path.join(cfg.HDRI_ROOT,
11 ’*/*.hdr’)))
12 bproc.world.set_world_background_hdr_img(hdri)
13 ...
14 # Sample bop objects for a scene
15 sampled_target_target_bop_objs = list(np.random.choice(
16 target_bop_objs, size=len(target_bop_objs), replace=False))
17 ...
18
19 for obj in sampled_target_target_bop_objs:
20 obj.hide(False)

27

5. Implementation

21 ...
22 # Add random apriltags to locations, if any
23 if cfg.DETECTOR_DATA.RENDER_RANDOM.ADD_APRILTAGS:
24 ...
25
26 # Create the apriltags
27 for _ in range(num_tags):
28 tag_id = np.random.randint(587)
29 tag_size = np.random.uniform(
30 cfg.DETECTOR_DATA.RENDER_RANDOM.MIN_APRILTAG_SIZE,
31 cfg.DETECTOR_DATA.RENDER_RANDOM.MAX_APRILTAG_SIZE)
32 tag = create_apriltag(tag_id=tag_id, tag_family=’36h11’,
33 size=tag_size)
34 april_tag_list.append(tag)
35 ...
36
37 # Sample object poses and check collisions
38 bproc.object.sample_poses(
39 objects_to_sample=sampled_target_target_bop_objs +
40 sampled_distractor_target_bop_objs,
41 sample_pose_func=sample_pose_func,
42 max_tries=1000)
43
44 # BVH tree used for camera obstacle checks
45 bop_bvh_tree = bproc.object.create_bvh_tree_multi_objects(target_bop_objs)
46
47 # Create and render 25 samples per scene
48 poses = 0
49 while poses < 25:
50 # Determine point of interest in the scene
51 poi = bproc.object.compute_poi(sampled_target_target_bop_objs +
52 sampled_distractor_target_bop_objs)
53
54 # Sample camera location
55 location = bproc.sampler.shell(center=poi,
56 radius_min=0.5,
57 radius_max=20,
58 elevation_min=1,
59 elevation_max=89,
60 uniform_volume=False)
61
62 # Compute rotation based on vector going from location towards poi
63 rotation_matrix = bproc.camera.rotation_from_forward_vec(
64 poi - location + (np.linalg.norm(poi - location) *
65 np.random.uniform([-0.5, -0.5, -0.5], [0.5, 0.5, 0.5])),
66 inplane_rot=np.random.uniform(-0.5, 0.5))
67
68 # Add homog cam pose based on location and rotation
69 cam2world_matrix = bproc.math.build_transformation_mat(location,
70 rotation_matrix)
71
72 # Check that obstacles have at least minimum distance to camera
73 if bproc.camera.perform_obstacle_in_view_check(cam2world_matrix,
74 {"min": 0.5},
75 bop_bvh_tree):
76 # Persist camera pose
77 bproc.camera.add_camera_pose(cam2world_matrix, frame=poses)
78 poses += 1
79
80 # render the cameras of the current scene
81 data = bproc.renderer.render()
82

28

5.1. Dataset Generation

83
84 # Write data to bop format
85 bproc.writer.write_bop(output_dir=cfg.DETECTOR_DATA.ROOT,
86 target_objects=sampled_target_target_bop_objs,
87 dataset=cfg.DETECTOR_DATA.DATASET_NAME,
88 depths=data["depth"],
89 depth_scale=1.0,
90 annotation_unit=cfg.DETECTOR_DATA.ANNOTATION_UNIT,
91 colors=data["colors"],
92 color_file_format="JPEG",
93 append_to_existing_output=True,
94 ignore_dist_thres=500,
95 calc_mask_info_coco=True,
96 num_worker=cfg.DETECTOR_DATA.NUM_WORKERS)
97 bproc.object.delete_multiple(entities=april_tag_list,
98 remove_all_offspring=False)

The scene parameters and packages for the generation of the BlenderProc dataset are
configured in training_toolkit_config_lander_lru_tags.yaml:

1 # config for generation and training of dataset for lander, lru
2
3 # the packages to run with
4 PACKAGES:
5 BLENDERPROC: "blenderproc/2.7.2@pypi/unstable"
6 COCO2YOLO: "coco2yolo/0.1.1@semsa/unstable"
7 YOLOV7: "yolov7/0.5.3@semsa/unstable"
8 DENSE_POSE: "dense_pose/0.2.8@semsa/unstable"
9

10 CAMERA:
11 K_MATRIX: [[1322.69, 0., 646.0], [0., 1322.69, 482.0], [0., 0., 1.]]
12 IMAGE_HEIGHT: 964
13 IMAGE_WIDTH: 1292
14
15 # object model paths
16 OBJECT_MODELS:
17 FILE_PATHS:
18 - ’/path/to/lander.obj’
19 - ’/path/to/lru.obj’
20 ...
21 DETECTOR_DATA:
22 ROOT: /net/rmc-gpu18/home_local/rueg_ma/output/108
23 DATASET_NAME: detector_data
24 # provide a label mapping in the form of ‘object_name: class_id‘
25 NUM_SCENES: 160 # results in num_scenes * 25 samples; use 40 for the dataset

to have 1000 samples
26 RENDER_RANDOM:
27 ADD_APRILTAGS: True
28 MIN_APRILTAGS: 5
29 MAX_APRILTAGS: 20
30 MIN_APRILTAG_SIZE: 0.3
31 MAX_APRILTAG_SIZE: 0.6
32 ...

The BOP dataset BPROC_4K is created by executing the rendering script with Train-
ingToolkit:

cissy run -as -kp training_toolkit/feat_lru@semsa/snapshot create_blenderproc_

dataset_flying_with_tags --config-file training_toolkit_config_lander_lru_tags

.yaml --output /net/rmc-gpu18/home_local/\$USER/output/BPROC_4K

29

5. Implementation

5.1.2. OAISYS

For generating the OAISYS dataset, we used TerrainStageSimulator, an implemen-
tation of OAISYS. The custom rendering script MeshPhysicsPlace.py extends the
functionality of MeshPhysicsScatter.py. It drops the robot object meshes near a
dummy target object in the scene, at which the camera is pointed, and logs the robot object
poses:

1 ...
2 class MeshPhysicsPlace(TSSMesh):
3 ...
4 # create scene
5 def create(self, instance_id_offset=0):
6 ...
7 # get list of object files
8 self.obj_list = self.get_object_list(self._cfg["meshType"],
9 self._cfg["mesh"])
10 # select objects to scatter
11 self.scatter_list = self.get_obj_scatter_list(obj_list=self.obj_list,
12 scatter_params=self.
13 _cfg["scatterParams"])
14
15 # offset where to scatter objects
16 offset = bpy.data.objects["target_object"].location
17
18 # scatter objects
19 self.scattered_obj_list = self.scatter_obj(obj_list=self.scatter_list,
20 scatter_params=self.
21 _cfg["scatterParams"],
22 mesh_list=[],
23 offset=offset,
24 keyframe=1)
25 ...
26 return len(self.scattered_obj_list), len(self.scattered_obj_list)
27
28 # creating one sample of the scene
29 def step(self, keyframe):
30
31 ...
32 # offset where to scatter objects
33 offset = bpy.data.objects["target_object"].location
34 # rescatter objects
35 self.scattered_obj_list = self.scatter_obj(obj_list=self.scatter_list,
36 scatter_params=self.
37 _cfg["scatterParams"],
38 mesh_list=self.
39 scattered_obj_list,
40 offset=offset,
41 keyframe=keyframe)
42 # log object poses
43 def log_step(self, keyframe):
44 for mesh in self.scattered_obj_list:
45 pose = [str(mesh.location[0]), str(mesh.location[1]),
46 str(mesh.location[2]),
47 str(mesh.rotation_euler[0]),
48 str(mesh.rotation_euler[1]),
49 str(mesh.rotation_euler[2])]
50 self._logger.log_pose(f"{mesh.name}", pose)
51 ...
52 ...

30

5.1. Dataset Generation

The scene parameters for the generation of the OAISYS dataset are configured in
OAISYS_lander_lru_cfg.json:

1 {
2 ...
3 "ASSET_SETUP": {
4 ...
5
6 "MESHES": [{
7 "name": "lru_physics", # lru object
8 "type": "MeshPhysicsPlace",
9 "meshParams": {
10 "stepIntervalOption": "LOCAL",
11 "stepInterval": 1,
12 "meshType": "SPECIFIC",
13 "instanceLabelActive": true,
14 "randomSwitchOnOff": false,
15 "activationProbability": 1.0,
16 "mesh": {
17 "meshFilePath": "/path/to/lru.blend",
18 "meshInstanceName": "/path/to/lru.blend"
19 },
20 "scatterParams": {
21 "scatterType": "BOX",
22 "scatterBoxLimitsX": [-3, 3],
23 "scatterBoxLimitsY": [-3, 3],
24 "initialRotationDeg": [[0, 0], [0, 0], [0, 360]],
25 "scatterAtSensorBase": true,
26 "maxPhysicsFrames": 100,
27 "scatterHeight": 2.0,
28 "scatterOffset": [0, 0, 0],
29 "numScatterMeshes": 1,
30 "numScatterClasses": 1,
31 "scatterSize": [1.0, 1.0]
32 },
33 "passParams": {
34 "rgb": {},
35 "semantic_label": {"labelIDVec": [[0,3374,0,0]]},
36 "instance_label": {}
37 }
38 }
39 },
40 # analogous for lander object
41 ...
42]
43 }
44 }

The OAISYS dataset is created by running OAISYS with the defined config:

python3 run_oaisys.py --blender-install-path /path/to/blender/ --config-file

cfgExamples/OAISYS_lander_lru_cfg.json

OAISYS outputs a dataset in its own format, which needs to be converted to BOP [21]
format to be trainable by our models. The following information is already available in
the OAISYS output and needs only be reordered:

• detector_data/train_prb/.../rgb/

• detector_data/train_prb/.../depth/

• detector_data/train_prb/.../mask_visib/

31

5. Implementation

All other information must be derived from the sample labels and the CAD model. Specif-
ically, the following steps are taken to generate the missing information:

• Write detector_data/config.yaml from the information in the OAISYS
config.

• Write detector_data/camera.json from the OAISYS scene output logs.

• Define the unique identifying itegers for each object in detector_data/
object_id_mapping.yaml.

• Render binary images of the CAD models using pyrender and save them to
detector_data/train_prb/.../mask/.

• Write the camera pose in each scene rom the OAISYS output logs to a dictionary
and save it to detector_data/train_prb/.../scene_camera.json.

• Write all object poses from the OAISYS output logs to a dictionary and save it to
detector_data/train_prb/.../scene_scene_gt.json.

• Calculate the bounding boxes from the visible mask, write them to a dictionary and
save it to detector_data/train_prb/.../scene_gt_info.json.

• Write the metadata to a dictionary and save it to detector_data/train_
prb/.../scene_gt_coco.json.

The conversion from OAISYS format to BOP format is implemented in the custom con-
version script OAISYS_lander_lru_BOP_writer.py. The BOP dataset OAISYS_4K
is created by running the following command:

python3 src/utilities/OAISYS_lru_bop_writer.py oaisys_tmp/OAISYS_4K

5.1.3. Combined

The BOP dataset COMBINED_8K is created by merging BPROC_4K and OAISYS_4K.
We merge the datasets using the merge_dataset command of TrainingToolkit:

cissy run -as -kp training_toolkit/feat_lru@semsa/snapshot merge_datasets

--output /path/to/BPROC_4K --config-file /path/to/BPROC_4K/detector_data/

config.yaml

5.2. Model Training

The visual models are trained with TrainingToolkit. We trained three triples of mod-
els, one for each training dataset. The training of a triple of models from a dataset is done
sequentially: First, the YOLOv7 model is trained from the raw data:

cissy run -as -kp training_toolkit/feat_lru@semsa/snapshot train_yolov7

--config-file /path/to/config.yaml --output /path/to/dataset

32

5.3. Vision Pipeline

Then, the two DensePose models Lander DensePose and LRU DensePose are trained.
During DensePose training, the previously trained YOLOv7 model infers detections from
the dataset, which are then fed to the DensePose models alongside the input images:

WANDB_MODE=offline cissy run -as -kp training_toolkit/feat_lru@semsa/snapshot

train_dense_pose --config-file /path/to/config.yaml --output /path/to/dataset

5.3. Vision Pipeline

The Visual Pipeline was implemented in the Python package rmc_markerless_
pose_estimation. Here, we discuss the implementations of the object detection,
detection filtering, and pose estimation components.

5.3.1. Object Detection

The object detection component is implemented in pose_estimation.py. It
reads the specified weights from the trained YOLOv7 model and the parameters from the
configuration. It then creates the object detector by calling the yolov7_interface
provided by the package yolov7_pcvp:

1 from os import listdir, environ
2 from os.path import isfile, isdir, join
3 from time import strftime, gmtime
4 from yolov7_pcvp import yolov7_interface
5 ...
6
7 def get_yolov7_detector(cfg):
8 training_set = cfg.TRAINING_SET
9 yolo_data_dirs = [d for d in listdir(training_set) if ("yolov7" in d) and

10 ("detector_data" in d) and isdir(join(training_set, d))]
11 if not len(yolo_data_dirs):
12 print("No yolov7 data found in TRAINING_SET. "
13 "Make sure that yolov7 detector has been trained.")
14 print("Exiting program.")
15 exit()
16 yolo_data_dirs.sort()
17 yolo_data_dir = join(training_set, yolo_data_dirs[-1])
18 print(yolo_data_dir)
19 yolo_weights = join(yolo_data_dir, "weights", cfg.YOLO.WEIGHTS_FILE)
20 if not isfile(yolo_weights):
21 print("Yolov7 weights not found in TRAINING_SET. "
22 "Make sure that yolov7 detector has been trained.")
23 print("Exiting program.")
24 exit()
25 yolov7_detector = yolov7_interface.YOLOv7(
26 state_dict_path=yolo_weights,
27 image_crop_size=cfg.YOLO.IMAGE_CROP_SIZE,
28 det_threshold=cfg.YOLO.DET_THRESHOLD,
29 nms_iou_threshold=cfg.YOLO.NMS_IOU_THRESHOLD,
30 trace=cfg.YOLO.TRACE,
31 nms_class_agnostic=cfg.YOLO.NMS_CLASS_AGNOSTIC,
32 test_time_augmentation=cfg.YOLO.TEST_TIME_AUGMENTATION,
33 model_save_name=cfg.YOLO.MODEL_SAVE_NAME,
34 save_dir=’/tmp/’ + environ.get(’USER’,

33

5. Implementation

35 str(hash(strftime("%Y_%m_%d_%H_%M_%S",
36 gmtime()))))
37)
38 return yolov7_detector
39 ...

5.3.2. Detection Filtering

The detection filtering component is implemented in pose_estimation.py. The
confidence filter is implicitly implemented in the yolov7_interface by passing the
confidence threshold as a parameter to the constructor. The remaining three filters are im-
plemented explicitly. The function best_detections() implements the best-detections
filter, the function filter_detections() implements the box-ratio filter and the
border-contact filter:

1 ...
2 def best_detections(detections):
3 optimized_detections = []
4 best_confidences = {}
5 best_indexes = {}
6 i = 0
7 for box in detections:
8 box_label = box["obj_name"]
9 confidence = box["conf"]
10 if box_label in best_confidences:
11 if confidence > best_confidences[box_label]:
12 best_confidences[box_label] = confidence
13 best_indexes[box_label] = i
14 else:
15 best_confidences[box_label] = confidence
16 best_indexes[box_label] = i
17 i += 1
18 for label, index in best_indexes.items():
19 box = detections[index]
20 optimized_detections.append(box)
21 return optimized_detections
22
23 def filter_detections(detections, width, height, acceptable_ratio,
24 acceptable_image_edges):
25 filtered_detections = []
26 for box in detections:
27 xmin = box["xmin"]
28 ymin = box["ymin"]
29 xmax = box["xmax"]
30 ymax = box["ymax"]
31 ratio = abs(((ymax - ymin) * height) / ((xmax - xmin) * width))
32 if not ((1.0/acceptable_ratio) < ratio < acceptable_ratio):
33 print("discarded box because of box ratio: " + str(ratio))
34 continue
35 touched_image_edges = 0
36 if xmin < 0.005:
37 touched_image_edges += 1
38 if xmax > 0.995:
39 touched_image_edges += 1
40 if ymin < 0.005:
41 touched_image_edges += 1
42 if ymax > 0.995:
43 touched_image_edges += 1

34

5.3. Vision Pipeline

44 if touched_image_edges > acceptable_image_edges:
45 print("discarded box because of touched image edges: " +
46 str(touched_image_edges))
47 continue
48 filtered_detections.append(box)
49 return filtered_detections
50 ...

5.3.3. Pose Estimation

The pose estimation component is implemented in pose_estimation.py. It
reads the specified weights from the trained DensePose models and the parameters from
the configuration. It then creates a pose estimator instance for each object by calling the
dense_pose_interface provided by the package dense_pose_pcvp:

1 from os import listdir, environ
2 from os.path import isfile, isdir, join
3 from time import strftime, gmtime
4 from dense_pose_pcvp import dense_pose_interface
5 ...
6
7 def get_dense_pose_estimator(weights_path, mesh_cfg):
8 dense_pose_estimator = dense_pose_interface.DensePoseEstimator(
9 state_dict_path=Path(weights_path), mesh_config=mesh_cfg)

10 return dense_pose_estimator
11
12 def get_dense_pose_estimators(cfg):
13 dense_pose_estimators = {}
14 training_set = cfg.TRAINING_SET
15 dense_pose_data_dirs = [d for d in listdir(training_set) if
16 ("dense_pose" in d) and
17 isdir(join(training_set, d))]
18 if not len (dense_pose_data_dirs):
19 print("No dense_pose data found in TRAINING_SET. "
20 "Make sure that dense_pose estimator has been trained.")
21 print("Exiting program.")
22 exit()
23 for obj_cfg in cfg.DENSE_POSE.OBJECTS:
24 obj_name = obj_cfg.NAME
25 dense_pose_obj_data = join(training_set, "dense_pose_" + obj_name)
26 date_dirs = listdir(dense_pose_obj_data)
27 if not len(date_dirs):
28 print("No training_runs found in " + dense_pose_obj_data +
29 ". Make sure that dense_pose estimator has been trained.")
30 print("Exiting program.")
31 exit()
32 date_dirs.sort()
33 date_dir = join(dense_pose_obj_data, date_dirs[-1])
34 time_dirs = listdir(date_dir)
35 if not len(time_dirs):
36 print("No training_runs found in " + date_dir +
37 ". Make sure that dense_pose estimator has been trained.")
38 print("Exiting program.")
39 exit()
40 time_dirs.sort()
41 time_dir = join(date_dir, time_dirs[-1])
42 dense_pose_obj_weights = join(time_dir, "checkpoints",
43 obj_cfg.WEIGHTS_FILE)
44 if not isfile(dense_pose_obj_weights):

35

5. Implementation

45 print("Dense_pose weights " + dense_pose_obj_weights +
46 " not found. Make sure that dense_pose estimator has been trained.")
47 print("Exiting program.")
48 exit()
49 dense_pose_estimators[obj_cfg.NAME] = get_dense_pose_estimator(
50 dense_pose_obj_weights, obj_cfg.MESH)
51 return dense_pose_estimators
52 ...

5.4. ROS2 Node

The visual pipeline is wrapped in a ROS2 node to couple it with the SLAM pipeline
and integrate it into the existing SLAM system. The ROS2 Node is implemented in
pose_estimation_ros2.py. It creates the visual components and subscribes to the
ROS2 topics camera_pt_stereo/left/image and camera_pt_stereo/left
/camera_info, through which it receives the camera input stream and the camera pa-
rameter, respectivelys. It then processes the camera input by running the visual compo-
nents sequentially. The estimated poses from the visual pipeline are then used to generate
SLAM nodes, incorporating the buffered transformation tree built from the /tf topic.
The generated SLAM nodes are then published as AddSlamNode messages to the topic
add_slam_node.

1 from source.pose_estimation import (
2 get_yolov7_detector,
3 get_dense_pose_estimators,
4 estimate_poses,
5 best_detections,
6 filter_detections)
7 ...
8
9 class PoseEstimatorRos2(Node):
10 def __init__(self, cfg, timestamp=None, output_dir=None):
11 super().__init__(’rmc_markerless_pose_estimation’)
12 # Declare ros2 parameters and class attributes
13 ...
14 # Create object detector and pose estimators
15 self.yolov7_detector = get_yolov7_detector(self.cfg)
16 self.dense_pose_estimators = get_dense_pose_estimators(cfg)
17
18 self.sequence_id = 0
19 ...
20 self.tf_buffer = Buffer()
21 self.transform_listener = TransformListener(
22 self.tf_buffer, self, spin_thread=True)
23
24 self.image_subscriber = self.create_subscription(
25 Image, self.camera_image_topic, self.image_callback,
26 self.qos_profile)
27 self.get_logger().info("Subscribed to topic: " +
28 self.camera_image_topic)
29
30 self.camK = None
31 self.camera_info_subscriber = self.create_subscription(
32 CameraInfo, self.camera_info_topic, self.camera_info_callback, 1)
33
34 self.slam_node_publisher = self.create_publisher(

36

5.4. ROS2 Node

35 AddSlamNode, self.add_landmark_topic, 1)
36 self.get_logger().info("Ready to publish to topic: " +
37 self.add_landmark_topic)
38
39 def camera_info_callback(self, camera_info_msg):
40 p_matrix = camera_info_msg.p
41 self.camK = projection_array_to_camk(p_matrix)
42 self.get_logger().info("Got projection matrix from topic " +
43 self.camera_info_topic + ": \n" +
44 str(self.camK))
45 self.destroy_subscription(self.camera_info_subscriber)
46
47 def image_callback(self, input_image_msg):
48 ...
49 img = self.bridge.imgmsg_to_cv2(input_image_msg, "bgr8")
50 h, w = img.shape[:2]
51
52 # Object detection inference
53 detections, overlayed_img = self.yolov7_detector.run(img=img)
54
55 # Detection filtering
56 detections = best_detections(detections)
57 detections = filter_detections(detections, w, h,
58 self.cfg.YOLO.ACCEPTABLE_RATIO,
59 self.cfg.YOLO.ACCEPTABLE_TOUCHED_EDGES)
60
61 # Pose estimation inference
62 label_to_results = estimate_poses(self.dense_pose_estimators,
63 self.camK, img, detections)
64 ...
65 for label, results in label_to_results.items():
66 for pose in results["poses"]:
67 # read pose_in_camera_frame and guess cov_in_camera_frame
68 ...
69 robot0_to_tag_pose = self.tf_buffer.transform(
70 pose_in_camera_frame, self.robot_frame)
71 ...
72 # Turn PoseStamped into transformation array
73 cam_to_target_transform = xyz_array(
74 pose_in_camera_frame.pose.position) +
75 xyzw_array(pose_in_camera_frame.pose.orientation)
76 ...
77 # Identity transform in case of markerless observation
78 target_to_robot1_transform = TransformStamped()
79 # Transform pose and covariance fomr camera frame to robot frame
80 robot0_to_robot1_pose, cov_in_robot1_frame =
81 self.transform_pose_and_cov_from_tag_to_target(
82 robot0_to_tag_pose,
83 cam_to_target_transform,
84 target_to_robot1_transform,
85 cov_in_camera_frame)
86 ...
87 # Create robot observation node message:
88 robot0_to_robot1_pose_with_cov = PoseWithCovarianceAndId()
89 robot0_to_robot1_pose_with_cov.robot_id = self.robot_id
90 robot0_to_robot1_pose_with_cov.pose.pose = robot0_to_robot1_pose
91 robot0_to_robot1_pose_with_cov.pose.covariance =
92 cov_in_robot1_frame
93
94 # Create SLAM node message
95 robot_detection_slam_node_msg = AddSlamNode()
96 robot_detection_slam_node_msg.header =

37

5. Implementation

97 copy.deepcopy(input_image_msg.header)
98 robot_detection_slam_node_msg.header.frame_id = ’imu’
99 robot_detection_slam_node_msg.type =

100 ’markerless_robot_observation’
101 robot_detection_slam_node_msg.session_id = self.session_id
102 robot_detection_slam_node_msg.sequence_id = self.sequence_id
103 robot_detection_slam_node_msg.observed_robot_id = robot1_id
104 robot_detection_slam_node_msg.poses.append(
105 robot0_to_robot1_pose_with_cov)
106
107 # Publish SLAM node message
108 self.slam_node_publisher.publish(robot_detection_slam_node_msg)
109 self.sequence_id += 1

The parameters for the ROS2 node wrapping the visual pipeline and the SLAM node
generation step are configured in config.yaml:

1 ...
2 TRAINING_SET: "/path/to/COMBINED_8K"
3
4 YOLO:
5 WEIGHTS_FILE: "best.pt"
6 IMAGE_CROP_SIZE: 1292
7 DET_THRESHOLD: 0.9825
8 NMS_IOU_THRESHOLD: 0.7
9 TRACE: true

10 NMS_CLASS_AGNOSTIC: false
11 TEST_TIME_AUGMENTATION: false
12 MODEL_SAVE_NAME: "traced_model"
13 VISUALIZE:
14 BETTER_VISUALIZATION: true
15 SAVE: true
16 ACCEPTABLE_RATIO: 1.85
17 ACCEPTABLE_TOUCHED_EDGES: 1
18 SAVE_RESULTS: true
19
20 DENSE_POSE:
21 OBJECTS:
22 - NAME: "lander"
23 MESH:
24 path: "path/to/lander.obj"
25 units: "m"
26 ANNOTATION_COLOR: (0, 255, 0)
27 WEIGHTS_FILE: "last.ckpt"
28 - NAME: "lru"
29 MESH:
30 path: "path/to/lru.obj"
31 units: "m"
32 ANNOTATION_COLOR: (255, 127, 0)
33 WEIGHTS_FILE: "last.ckpt"
34 ...

The ROS2 node is run on both the LRU and LRU2 systems with the command
estimate_pose_ros2 and the specified configuration (the shown example is the LRU
case):

cissy run -as -kp rmc_markerless_pose_estimation/feat-lru@moro/snapshot

estimate_pose_ros2 --config cfg/config.yaml --output /path/to/outputdir

/for/debugging/and/evaluation --ros-args -r __ns:=/lru -p robot_id:=lru

38

6. Evaluation

This chapter describes the experimental setup and methods used to evaluate the mark-
erless pose estimation system. First, we present the evaluation datasets used to evaluate
the system. Furthermore, the different data types and their purpose for the evaluation pro-
cess are explained. Next, we define the metrics with which the performance of the system
is measured. Subsequently, the different evaluation methods are presented, divided into
synthetic test evaluation and real-world test evaluation. Finally, we list the hardware setup
of the test system on which the evaluation was performed.

6.1. Evaluation datasets

We differentiate between two different types of test data for evaluation: Synthetic
test data and real-world data. In the following, we describe both types and discuss their
differences.

6.1.1. Synthetic Test Data

Synthetic test data is idealized test data from a simulation environment that has been
generated with the purpose of testing the system’s performance under controlled condi-
tions. If the method used to generate the test data is the same method that was used to
generate the training data, then the training and test data are in the same data distributions.
In that case, excellent model performance can be expected, although generalization and
resistance to overfitting cannot be established. Synthetic test data is labeled with perfect
ground truth information, which allows us to directly and exactly measure the accuracy of
the system.

6.1.1.1. Blenderproc Test Set

The BlenderProc test set was generated with the same tools and presets as the Blender-
Proc training, described in 5.1.1. It consists of 250 unseen samples from 10 virtual scenes
containing the headless LRU, the Lander, and AprilTags as distractor objects.

6.1.1.2. OAISYS Test Set

The OAISYS test set was generated with the same method and presets as the OAISYS
training, described in 5.1.2. It consists of 250 unseen samples from 250 virtual scenes
containing the headless LRU and the Lander, and rocks as distractor objects.

39

6. Evaluation

6.1.1.3. Synthetic Test Data Overview

Table 6.1 lists the two synthetic test sets and their properties.

Table 6.1.: Synthetic Test Sets

Set name # Scenes # Samples Observed robots Distractors Distance

BPROC_250 10 250
Lander,

headless LRU AprilTags 2m – 20m

OAISYS_250 250 250
Lander,

headless LRU rocks 2m – 20m

6.1.2. Real-World Test Data

Real-world test data originates from real-world sensors and is recorded as equivalent
to a real-time run of the robotic systems. The real-world test data was recorded as part of
the ARCHES project on Mount Etna in 2022. It consists of 6 ROS bagfiles from 3 multi-
robot runs, i.e., 3 ROS sessions running on 2 rovers simultaneously (LRU and LRU2).
The bagfiles were converted to ROS2 bags before playing them on the ROS2 network
and are assumed to be equivalent to native ROS2 recordings. A grayscale camera stream
at 10 FPS serves as visual input. The real-world test bags are labeled with imperfect
ground truth information, thus we can only indirectly obtain an inexact measurement of
the system accuracy.

6.1.2.1. Real-World test Data Overview

Table 6.2 lists the 6 real-world test bags and their properties. The naming index for
the three runs is kept from the original recordings, instead of numberings 1 – 3. Run 2 has
only ground truth of LRU, not LRU2. Run 3 and Run 5 have ground truth of both active
robots. We differentiate between the total duration of a bag and the active time span, i.e.,
the time span between the first and last robot localizations.

Table 6.2.: Real-World Test Bags
Bag name Duration Active span Observing robot Observed robots Ground truth

multirobot_run02_lru 1087s 1076s LRU Lander, LRU2 ✓

multirobot_run02_lru2 1089s 1084s LRU2 Lander, LRU

multirobot_run03_lru 2503s 2496s LRU Lander, LRU2 ✓

multirobot_run03_lru2 2503s 2496s LRU2 Lander, LRU ✓

multirobot_run05_lru 838s 488s LRU Lander, LRU2 ✓

multirobot_run05_lru2 848s 840s LRU2 Lander, LRU ✓

40

6.2. Evaluation Metrics

6.2. Evaluation Metrics

In this section, we formally describe the metrics that are used for the evaluation of
the system. We start by describing how the different ground truths are derived and repre-
sented. We then define each metric and its importance in assessing the system capabilities.

6.2.1. Ground Truths

Our evaluation metrics are formulated by taking a difference between estimated out-
puts and their corresponding ground truths. Synthetic ground truth and real-world
ground truth are used in with simulated real-world test data, respectively.

6.2.1.1. Synthetic Ground Truth

Since the synthetic test data are represented by BOP datasets, the ground truth can
be easily accessed. Each sample has one ground truth pose per robot, which is read from
scene_gt.json. The ground truth pose of a detected robot r in camera frame c is
defined as:

T gt
c,r =

[
Rgt

c,r tgtc,r

0 0 0 1

]
r ∈ {Lander, LRU} (6.1)

6.2.1.2. Real-World Ground Truth

Accessing ground truths from real-world data comes with additional challenges: In
the real-world test data, ground truth poses do not exist in a readily available format and
must therefore be derived from other modalities. Once derived, real-world ground truth is
always less accurate than ground truth of synthetic test data. The accuracy is impacted by
the limitations of the sensors, imperfect robot models, imperfect ground truth alignment,
and the necessary assumptions that are made for the evaluation.

The real-world ground truth is based on GNSS RTK, which was recorded with the test
bags. In GNSS RTK, we have access to an absolute 3D position of LRU and LRU2, each
consisting of latitude, longitude, and altitude. Through the standard non-linear UTM con-
version, we obtain an absolute 3D position of the robot in the orthonormal metric frame
utm. We then find a rigid transformation TLander,utm that describes the alignment between
the frame utm and the lander frame, using the Kabsch-Umeyama algorithm as described
in section 3.2. With this rigid transformation, the absolute ground truth trajectory is trans-
formed into a relative trajectory in lander frame.

The point pairs for the alignment are taken from the recorded runs: A combined list
of timestamps τLRU, i and τLRU2, j is chosen as points in time, at which the SLAM output
is as accurate as possible. Each point in the list lies after one or preferably several con-
secutive observations and SLAM updates, which converge towards a temporarily certain
state. For example, at the beginning of an LRU run, there are 20 observations between
5s and 15s. Later in that run, there are 15 observations between 1530s and 1575s. We
chose the timestamps τLRU, 1 = 20 and τLRU, 2 = 1580, so that the SLAM system has
enough time to process the observation, update the robot pose, and converge towards a

41

6. Evaluation

temporarily certain state. We chose timestamps for LRU2 analogously. The point pairs
are then defined as:

(aLRU, i , bLRU, i) = (tgtutm,LRU(τLRU, i) , t
SLAM
Lander,LRU(τLRU, i))

(aLRU2, j , bLRU2, j) = (tgtutm,LRU2(τLRU2, j) , t
SLAM
Lander,LRU2(τLRU2, j))

A = {aLRU, i : ∀i} ∪ {aLRU2, j : ∀j}

B = {bLRU, i : ∀i} ∪ {bLRU2, j : ∀j}

(6.2)

With a list A of all chosen LRU and LRU2 points in frame utm and a list B of all
chosen LRU and LRU2 points in utm frame, the rigid alignment transformation is defined
as:

TLander,utm = KabschUmeyama(A,B) (6.3)

For all real-world runs, ground truth poses as well as SLAM derived poses will be
defined relative to the lander. The ground truth position of a robot r in lander frame is
defined as: [

tgtLander,r

1

]
= TLander,utm

[
tutm,r

1

]
r ∈ {LRU,LRU2} (6.4)

To complete the ground truth pose of the robot r in lander frame, we combine the
ground truth position with the SLAM derived rotation, assuming that the SLAM rotational
output is approximately accurate. It is defined as:

T gt
Lander,r =

[
RSLAM

Lander,r tgtLander,r

0 0 0 1

]
r ∈ {LRU,LRU2} (6.5)

From the ground truth robot poses in lander frame and the robot joint configurations,
the estimated poses in camera frame are derived. For a tag detection of a lander tag by an
observing robot o, the ground truth pose in camera frame co is defined as:

T gt
co,tag = Tco,o (T

gt
Lander,o)

−1 TLander,tag o ∈ {LRU,LRU2} (6.6)

For a tag detection of a robot r tag by an observing robot o, the ground truth pose in
camera frame co is defined as:

T gt
co,tag = Tco,o (T

gt
Lander,o)

−1 T gt
Lander,r Tr,tag o, r ∈ {LRU,LRU2} (6.7)

For a markerless detection of the lander by an observing robot o, the ground truth
pose in camera frame co is defined as:

T gt
co,Lander

= Tco,o (T
gt
Lander,o)

−1 o ∈ {LRU,LRU2} (6.8)

For a markerless detection of a robot r by an observing robot o, the ground truth pose
in camera frame co is defined as:

T gt
co,r = Tco,o (T

gt
Lander,o)

−1 T gt
Lander,r o, r ∈ {LRU,LRU2} (6.9)

42

6.3. Evaluation Methods

6.2.2. Metric Definitions

We use two different kinds of metrics for evaluation: pose estimation metrics and
SLAM metrics. Pose estimation metrics evaluate each robot detection and pose esti-
mation. For comparative evaluation, both tag detections and markerless detections are
measured against their corresponding ground truths. SLAM metrics evaluate the output
of the SLAM pipeline. For comparative evaluation, the SLAM system is measured first
without MPE (baseline), then with single-robot MPE, and then thirdly with multi-robot
MPE activated against the corresponding ground truth. The exact procedure is described
in section 6.3.

6.2.2.1. Evaluation Metrics: Pose Estimation

For a tag observation of a lander tag or a robot tag by an observing robot o, the pose
error in the camera frame co is defined as:

R̃co,tag = (Rgt
co,tag)

−1 R̂co,tag

t̃co,tag = t̂co,tag − tgtco,tag
o ∈ {LRU,LRU2} (6.10)

For a markerless observation of a robot r by an observing robot o, the pose error in
camera frame co is defined as:

R̃′
co,r = (Rgt

co,r)
−1 R̂co,r

t̃′co,r = t̂co,r − tgtco,r
o ∈ {LRU,LRU2}, r ∈ {Lander, LRU,LRU2}, o ̸= r

(6.11)

6.2.2.2. Evaluation Metrics: SLAM

For a robot r at time τ , the translational SLAM error in lander frame is defined as:

t̃Lander,r(τ) = tSLAM
Lander,r(τ)− tgtLander,r(τ) r ∈ {LRU,LRU2} (6.12)

The rotational SLAM error is not evaluated, since independent rotational ground truth
of real-world test data does not currently exist. We therefore evaluate only the transla-
tional SLAM error and infer the performance of the whole SLAM output based on the
translational results.

6.3. Evaluation Methods

The evaluation is separated into two parts: Synthetic test evaluation and real-world
test evaluation. In the synthetic test evaluation, the performance of the visual pipeline is
measured when applied to the synthetic test data. In the real-world test evaluation, the
performance of the visual pipeline is measured when applied to the real-world test data. In
addition, the impact of the integrated system is measured by comparing the performance
of the SLAM system with and without the MPE contribution.

43

6. Evaluation

6.3.1. Synthetic Test Evaluation

In the synthetic test evaluation, we use 3 sets of trained weights for the visual mod-
els, which we trained on 3 different training sets: BPROC_4K, OAISYS_4K, and COM-
BINED_8K. Each of the 3 models is tested on the two synthetic datasets described in
subsection 6.1.1: BPROC_250 and OAISYS_250. In all 6 runs, the sample-wise pose er-
ror of the MPE is measured and compiled. We then compare the following pose estimation
performance measures for each run:

• Mean absolute translational pose error

• Mean absolute rotational pose error

• Detection rate over all samples

• Translational pose error dependent on camera distance

• Distribution of the yaw error

The performance of the 3 trained models is then assessed and a best-performing model is
selected. The best-performing model is then used for all subsequent tests.

6.3.2. Real-World Test Evaluation

In the real-world test evaluation, we use only the best-performing model from the
simulated test evaluation. The markerless vision subsystem is continuously executed in-
side the markerless pose estimation ROS2 node in the ROS2 network configuration of the
mulirobot_ros2 mission. In practical ROS2 terms, we run a session of one rover bag at a
time, loading the SLAM graph of the other rover from a previous session into the current
context. This way, multi-robot observations can be represented in a merged multi-session
SLAM graph during runtime. Each of the 3 multi-robot runs consists of 2 bags, one for
LRU and LRU2. Of these 6 bags, 5 have ground truth annotation and are quantitatively
evaluated.

6.3.2.1. Real-World Evaluation: Pose Estimation

The sample-wise pose error of all markerless robot observations and tag robot ob-
servations is measured and compiled. We then compare the following pose estimation
performance measures for each run:

• Mean absolute translational pose error

• Mean absolute rotational pose error

• Maximum observed distance

• Minimum observed distance

• Translational pose error dependent on camera distance

• Distribution of the yaw error

44

6.3. Evaluation Methods

6.3.2.2. Real-World Evaluation: Integration Modes

Each bag is run in 5 different modes of integration, each time increasing the amount of
information available to the SLAM system by adding an observation type. By comparing
the results of all integration modes, we can quantify the impact that each observation
type has on the SLAM accuracy. Table 6.3 lists the integration modes and describes the
observation types available in each mode.

Table 6.3.: Integration modes

Mode Available information Observation types

A initial localization inital lander tags,
then dead reckoning

B + lander tag observations (loop closure) lander tags

C + multi-robot tag observations lander tags,
LRU tags,
LRU2 tags

D + lander markerless observations lander tags,
LRU tags,
LRU2 tags,
Lander MPE

E + multi-robot markerless observations lander tags,
LRU tags,
LRU2 tags,
Lander MPE,
LRU MPE,
LRU2 MPE

6.3.2.3. Real-World Evaluation: SLAM

The 6 bags are run in all 5 integration modes. The SLAM output of all 30 sessions
is measured and evaluated against the ground truth, where available, to obtain the SLAM
localization error over the duration of each session. We then compare the accuracy of the
SLAM localization in each mode and assess the impact of each pose estimation modality
on the system. In particular, we regard the following SLAM performance measures:

• Translational SLAM error over time

• Immediate impact of tag observations on the SLAM error

• Immediate impact of markerless observations on the SLAM error

• Mean translational SLAM error over the run

45

7. Results

This chapter contains all the results of the evaluation methods that were undertaken in
the scope of this thesis. First, the results of the synthetic tests are presented, in line with
the synthetic test evaluation methods described in subsection 6.3.1. Second, the results
of the real-world tests are presented, in line with the real-world test evaluation methods
described in subsection 6.3.2.

7.1. Synthetic Test Results

We now present the results of the synthetic tests, ordered by trained model, test set,
and detected object. The confidence threshold for the object detection component was set
to 0.93 for all synthetic tests.

47

7. Results

7.1.1. BPROC_4K Results

For the model trained with BPROC_4K, The sample-wise absolute translational pose
errors of both object classes, dependent on the camera distance, were measured. The
translational error was greater at further distances, shown in Figure 7.1. Furthermore, the
distribution of the yaw error for both object classes was measured. The lander yaw error
was far greater than the LRU yaw error, shown in Figure 7.2.

Figure 7.1.: BPROC_4K results: Sample-wise absolute translational pose error t over
object distance d. At far distances, a linear dependency can be observed.

Figure 7.2.: BPROC_4K results: Sample-wise yaw error for Lander and LRU.
Probability distribution functions (PDF) are normalized wrapped Gaussians. Lander

error is far greater than LRU error. Due to rotational symmetries, some poses are rotated
with slight groupings at ±90° and 180°.

48

7.1. Synthetic Test Results

7.1.2. OAISYS_4K Results

For the model triained with OAISYS_4K, The sample-wise absolute translational pose
errors of both object classes, dependent on the camera distance, were measured. The
model performed far better on the OAISYS_250 test set, with all errors staying below
1m, as shown in Figure 7.3. Furthermore, the distribution of the yaw error for both ob-
ject classes was measured. The lander yaw error on the BPROC_250 test set is evenly
distributed around all angles, indicating poor pose estimation performance, shown in Fig-
ure 7.4.

Figure 7.3.: OAISYS_4K results: Sample-wise absolute translational pose error t over
object distance d.

Figure 7.4.: OAISYS_4K results: Sample-wise yaw error for Lander and LRU.
Probability distribution functions (PDF) are normalized wrapped Gaussians.

49

7. Results

7.1.3. COMBINED_8K Results

For the model triained with COMBINED_8K, The sample-wise absolute translational
pose errors of both object classes, dependent on the camera distance, were measured.
The model showed excellent translational accuracy on both test sets, shown in Figure 7.5.
Furthermore, the distribution of the yaw error for both object classes was measured. Fig-
ure 7.6.

Figure 7.5.: COMBINED_8K results: Sample-wise absolute translational pose error t
over object distance d.

Figure 7.6.: COMBINED_8K results: Sample-wise yaw error for Lander and LRU.
Probability distribution functions (PDF) are normalized wrapped Gaussians.

50

7.1. Synthetic Test Results

7.1.4. Summarized Results

For each configuration, the detection rate ρ, the mean absolute translational pose error
t, and the mean absolute rotational pose error axis-angle θ are listed in Table 7.1.

Table 7.1.: Synthetic Test Results: The results are ordered by training set, test set, and
detected robot. The arrow after a variable indicates whether a higher (↑) or lower (↓)

value is desirable. Comparison between results of the same category achieved by
different trained models. The darker a table entry, the better the result achieved by this
trained model compared to other trained models. Best results in each category achieved

by a trained model are bold.

Training set Test set Detected robot ρ (↑) t [m] (↓) θ [rad] (↓)

BPROC_4K

BPROC_250
Lander 0.160 0.310 0.421

LRU 0.080 0.082 0.099

OAISYS_250
Lander 0.080 0.184 0.483

LRU 0.020 0.034 0.128

OAISYS_4K

BPROC_250
Lander 0.260 1.497 2.207

LRU 0.064 1.621 1.143

OAISYS_250
Lander 0.676 0.044 0.089

LRU 0.184 0.115 0.092

COMBINED_8K

BPROC_250
Lander 0.284 0.259 0.514

LRU 0.324 0.153 0.188

OAISYS_250
Lander 0.792 0.040 0.048

LRU 0.764 0.098 0.052

7.1.5. Model Selection

We now compare the results of the three trained models for the purpose of selecting
a best performing model. As expected, BPROC_4K performed well on BPROC_250 and
OAISYS_4K performed well on OAISYS_250. However, COMBINED_8K performed the
best on both test sets, achieving the best or second best result in every category. Notably,
COMBINED_8K achieved the best detection rate in all categories, beating the second best
detection rate by 0.024 – 0.580. The synthetic test results confirm that COMBINED_8K
performs the best overall, and will therefore be used in all subsequent tests.

51

7. Results

7.2. Real-World Test Results

We now present the results of the real-world tests conducted on the data from the 3
recorded multi-robot runs. The real-world pose estimation results are presented first, and
subsequently the real-world SLAM results.

7.2.1. Real-World Pose Estimation Results

We begin by evaluating the accuracy of the pose estimation in each run using the
metrics defined in subsubsection 6.2.2.1. For each run, we present the sample-wise results,
i.e., the accuracy of all observations, and the mean pose estimation errors. Then, we
summarize the results by compiling the observations of all runs and forming averages.

7.2.1.1. Real-World Pose Estimation Results: Run 2

In Run 2, the absolute translational pose errors, dependent on the camera distance,
were measured for the different observation types, shown in Figure 7.7. Furthermore, the
distribution of the yaw error was measured for the different observation types, shown in
Figure 7.8. The mean pose errors and range of camera distances are listed in Table 7.2.
Since only the LRU run had ground truth, only the pose errors of lander observations by
LRU are quantified.

Figure 7.7.: Real-world pose estimation results in Run 2: Sample-wise absolute
translational pose error t over object distance d. The results are ordered by observation

type.

52

7.2. Real-World Test Results

Figure 7.8.: Real-world pose estimation results in Run 2: Sample-wise yaw error. The
results are ordered by observation type. Probability distribution functions (PDF) are

normalized wrapped Gaussians.

Table 7.2.: Real-world pose estimation results in Run 2: The results are ordered by
observing active robot and detected object. Since the LRU2 recording had no ground

truth, pose errors of LRU2 observations by LRU could not be quantified. The arrow after
a variable indicates whether a higher (↑) or lower (↓) value is desirable.

Observer detected object t [m] (↓) θ [rad] (↓) dmin [m] (↓) dmax [m] (↑)

LRU

Lander tag 0.563 0.013 2.447 5.000

LRU2 tag

Lander MPE 0.416 1.530 5.775 5.783

LRU2 MPE

53

7. Results

7.2.1.2. Real-World Pose Estimation Results: Run 3

In Run 3, the absolute translational pose errors, dependent on the camera distance,
were measured for all observation types, shown in Figure 7.9. Furthermore, the distri-
bution of the yaw error was measured for all observation types, shown in Figure 7.10.
The mean pose errors and range of camera distances for all observation types are listed in
Table 7.3.

Figure 7.9.: Real-world pose estimation results in Run 3: Sample-wise absolute
translational pose error t over object distance d. The results are ordered by observing

robot (LRU, LRU2) and observation type.

Figure 7.10.: Real-world pose estimation results in Run 3: Sample-wise yaw error. The
results are ordered by observing robot (LRU, LRU2) and observation type. Probability

distribution functions (PDF) are normalized wrapped Gaussians.

54

7.2. Real-World Test Results

Table 7.3.: Real-world pose estimation results in Run 3: The results are ordered by
observing active robot and detected object. No LRU2 tags were observed in this run. The

arrow after a variable indicates whether a higher (↑) or lower (↓) value is desirable.

Observer detected object t [m] (↓) θ [rad] (↓) dmin [m] (↓) dmax [m] (↑)

LRU

Lander tag 0.397 0.016 3.462 4.939

LRU2 tag

Lander MPE 0.648 0.124 5.445 16.150

LRU2 MPE 0.525 0.413 2.325 8.165

LRU2

Lander tag 0.481 0.024 3.448 5.634

LRU tag 0.631 0.823 0.786 1.892

Lander MPE 0.367 0.125 4.773 6.001

LRU MPE 0.493 0.249 1.677 9.121

55

7. Results

7.2.1.3. Real-World Pose Estimation Results: Run 5

In Run 5, the absolute translational pose errors, dependent on the camera distance,
were measured for all observation types, shown in Figure 7.11. Furthermore, the distri-
bution of the yaw error was measured for all observation types, shown in Figure 7.12.
The mean pose errors and range of camera distances for all observation types are listed in
Table 7.4.

Figure 7.11.: Real-world pose estimation results in Run 5: Sample-wise absolute
translational pose error t over object distance d. The results are ordered by observing

robot (LRU, LRU2) and observation type.

Figure 7.12.: Real-world pose estimation results in Run 5: Sample-wise yaw error. The
results are ordered by observing robot (LRU, LRU2) and observation type. Probability

distribution functions (PDF) are normalized wrapped Gaussians.

56

7.2. Real-World Test Results

Table 7.4.: Real-world pose estimation results in Run 5: The results are ordered by
observing active robot and detected object. No LRU tags or LRU2 tags were observed in

this run. The arrow after a variable indicates whether a higher (↑) or lower (↓) value is
desirable.

Observer detected object t [m] (↓) θ [rad] (↓) dmin [m] (↓) dmax [m] (↑)

LRU

Lander tag 0.413 0.023 2.656 3.418

LRU2 tag

Lander MPE 1.362 0.258 17.144 17.144

LRU2 MPE 0.391 0.086 4.549 5.253

LRU2

Lander tag 0.256 0.018 2.499 7.632

LRU tag

Lander MPE 0.455 0.111 6.521 6.521

LRU MPE

57

7. Results

7.2.1.4. Summarized Real-World Pose Estimation Results

The observations from all real-world runs were compiled to assess the general ac-
curacy of the system. Figure 7.13 shows the translational pose errors, dependent on the
camera distance, for all real-world observations. Figure 7.14 shows the distribution of the
yaw errors for all real-world observations. The mean poses errors and range of camera
distances of the compiled set are listed in Table 7.5.

Figure 7.13.: Real-world pose estimation results in all runs: Sample-wise absolute
translational pose error t over object distance d. The results are ordered by observing

robot (LRU, LRU2) and observation type.

Figure 7.14.: Real-world pose estimation results in all runs: Sample-wise yaw error. The
results are ordered by observing robot (LRU, LRU2) and observation type. Probability

distribution functions (PDF) are normalized wrapped Gaussians.

58

7.2. Real-World Test Results

Table 7.5.: Real-world pose estimation results in all runs: The results are ordered by
observing active robot and detected object. No LRU2 tags were observed in any run. The

arrow after a variable indicates whether a higher (↑) or lower (↓) value is desirable.

Observer detected object t [m] (↓) θ [rad] (↓) dmin [m] (↓) dmax [m] (↑)

LRU

Lander tag 0.461 0.016 2.447 5.000

LRU2 tag

Lander MPE 0.667 0.350 5.445 17.144

LRU2 MPE 0.504 0.362 2.325 8.165

LRU2

Lander tag 0.465 0.023 2.499 7.632

LRU tag 0.631 0.823 0.786 1.892

Lander MPE 0.381 0.122 4.773 6.521

LRU MPE 0.493 0.249 1.677 9.121

7.2.2. Real-World SLAM Results

After showing the results of the pose estimation evaluation, we now present the re-
sults of the SLAM evaluation. First, we present the SLAM results for each run, i.e., the
localization error error of the robots, for which ground truth was available, over time.
Then, we summarize the results by forming the average errors over all runs.

59

7. Results

7.2.2.1. Real-World SLAM Results: Run 2

Figure 7.15 shows the localization error of LRU, in all integration modes, over time.
The mean localization error of LRU over the run duration is listed in Table 7.6. The
detailed trajectories of all integration modes in Run 2 can be found in the appendix (sub-
section A.1). Since LRU2 had no ground truth, its localization error is not quantified.

Figure 7.15.: LRU localization error in Run 2, compared by integration modes A – E.

Table 7.6.: Mean LRU localization error in Run 2, compared by integration modes A – E.

Mode t
SLAM
LRU [m]

A (baseline) 0.843
B (loop closure) 0.922
C (multi-robot tags) 0.834
D (lander mpe) 0.733
E (multi-robot mpe) 0.549

60

7.2. Real-World Test Results

7.2.2.2. Real-World SLAM Results: Run 3

Figure 7.16 and Figure 7.17 show the localization errors of LRU and LRU2, in all
integration modes, over time. The mean localization errors of LRU and LRU2 over the
run duration are listed in Table 7.7. The detailed trajectories of all integration modes in
Run 3 can be found in the appendix (subsection A.2).

Figure 7.16.: LRU localization error in Run 3, compared by integration modes A – E.

61

7. Results

Figure 7.17.: LRU2 localization error in Run 3, compared by integration modes A – E.

Table 7.7.: Mean LRU and LRU2 localization errors in Run 3, compared by integration
modes A – E.

Mode t
SLAM
LRU [m] t

SLAM
LRU2 [m]

A (baseline) 1.106 1.220

B (loop closure) 1.249 0.897

C (multi-robot tags) 1.353 0.642

D (lander mpe) 0.848 0.803

E (multi-robot mpe) 0.881 0.673

62

7.2. Real-World Test Results

7.2.2.3. Real-World SLAM Results: Run 5

Figure 7.18 and Figure 7.19 show the localization errors of LRU and LRU2, in all
integration modes, over time. The mean localization errors of LRU and LRU2 over the
run duration are listed in Table 7.8. The detailed trajectories of all integration modes in
Run 5 can be found in the appendix (subsection A.3).

Figure 7.18.: LRU localization error in Run 5, compared by integration modes A – E.

63

7. Results

Figure 7.19.: LRU2 localization error in Run 5, compared by integration modes A – E.

Table 7.8.: Mean LRU and LRU2 localization errors in Run 5, compared by integration
modes A – E.

Mode t
SLAM
LRU [m] t

SLAM
LRU2 [m]

A (baseline) 0.780 1.010

B (loop closure) 0.741 0.814

C (multi-robot tags) 0.669 0.767

D (lander mpe) 0.498 0.780

E (multi-robot mpe) 0.464 0.840

64

7.2. Real-World Test Results

7.2.2.4. Summarized SLAM Results

The SLAM localization errors from all runs were compiled and combined for both
rovers. The combined localization errors in all runs and average localization error over all
runs are listed in Table 7.9.

Table 7.9.: Combined real-world localization error in all runs, compared by integration
modes A – E. Averages are weighted by the active time span of each robot run.

Mode t
SLAM
Run 2 [m] t

SLAM
Run 3 [m] t

SLAM
Run 5 [m] Average t

SLAM
[m]

A (baseline) 0.843 1.163 0.926 1.074

B loop closure 0.922 1.073 0.788 1.000

C (multi-robot tags) 0.834 0.998 0.731 0.926

D (lander mpe) 0.733 0.825 0.676 0.785

E (multi-robot mpe) 0.549 0.777 0.702 0.730

65

8. Discussion

We now discuss the evaluation results that our system achieved. First, we discuss the
results pertaining to the pose estimation performance of the markerless vision component.
Then, we discuss the SLAM performance of the integrated system in the testing environ-
ment and interpret the results in view of prospective performance in general application.
Last, we identify and state the causes of the the systems current limitations.

8.1. Pose Estimation Performance

The markerless vision pipeline demonstrated promising pose estimation performance.
Especially the low translational error achieved in the synthetic tests under ideal conditions
(Lander 4.0cm, LRU 9.8cm) prove the claim that markerless pose estimation, if well
trained for the use case, can achieve outstanding accuracy and consistency. The system
demonstrated robustness to occlusion by the environment and other objects, shown in 8.1.

(a) (b)

Figure 8.1.: Robustness of the pose estimator against occlusion: The lander is accurately
detected and positioned even when occluded by the environment (a, b). LRU is

accurately detected and positioned even when occluded by the lander (c).

The differences in the performance of the three trained models are as expected. While
each of the models BPROC_4K and OAISYS_4K performed well on synthetic test data
from the same respective environment, they generalized poorly to the untrained environ-
ment. In the OAISYS_4K model’s case, the high BPROC_250 error shows a classical ex-
ample of overfitting to its own training data. The BPROC_4K model had high accuracy on
all data, which may be due to the greater spread in trained viewing angles and background

67

8. Discussion

patterns, preventing overfitting. However, BPROC_4K had the worst detection rate of any
model in all tests, making it unusable for general application. The COMBINED_8K model
had the best overall accuracy and the highest detection rate in all instances, proving that
the greater spread in training data prevented overfitting. The functionality of the COM-
BINED_8K model in the real-world test confirms that a sufficient degree of generalization
to an untrained environment was achieved.

In the real-world tests with comparable setups, the pose estimation was less accurate
(Lander 66.7cm and 38.1cm, LRU 49.3cm, LRU2 50.4cm). In all cases, LRU2 performed
better than LRU which may be due to differences in the camera hardware, 3D calibration,
or situational settings for exposure or focus. Observations of LRU were usually more ac-
curate than observations of LRU2. Since both rovers ran the same visual models trained
on data based off the LRU CAD model, LRU2 observations are more difficult for the sys-
tem and require a greater degree of generalization. The assumption that both rovers appear
similar enough to be trained as the same object class was justified; however, the differ-
ences were underestimated. The assumption that the accessories to the rovers will not
hinder pose estimation held partly true, however, counterexamples, shown in 8.2 indicate
a vulnerability to certain modifications that result in rotationally ambiguous appearances.

Figure 8.2.: Vulnerability of the pose estimator against robot modifications: LRU2 is
rotated by 180° due to the arm’s similarity with the mast.

Despite rotational symmetries, the Lander class was less vulnerable to erroneous ro-
tation estimates. Whether ladders are sufficient visual features to estimate the rotation in
most cases, or whether other features, such as accessories or paint, should be trained, is a
continued consideration.

It should be noted that the measured translational error of the marker-based pose es-
timation was relatively high (Lander tags 46.1cm and 46.5cm, LRU tags 63.1cm). The
magnitude of the measured errors was not consistent with our knowledge of the perfor-
mance of AprilTag technology. This suggests that the inaccuracy of the GNSS-derived
ground truth may be larger than the inaccuracy of the evaluated systems, distorting re-
sults. In some cases, the measured error of specific pose estimates was not consistent
with the visual assessment of these poses, seen in 8.3. We therefore believe that the true
pose estimation accuracy lies somewhere between the measured accuracy in synthetics
tests and the measured accuracy in real-world tests. More accurate test data with precise
and aligned ground truth should be recorded to quantify the true accuracies of the visual
modalities in question.

68

8.2. SLAM Performance

Figure 8.3.: Questioning the ground truth accuracy: Despite the close alignment, the
pose error is supposedly 38.6cm, according to the ground truth.

8.2. SLAM Performance

In our evaluation, the integrated SLAM system demonstrated excellent performance.
The mean SLAM localization error of both rovers remained below 1m in all tests (0.464m
– 0.881m). In all test, the combined SLAM performance of Mode D (lander MPE) sur-
passed that of Mode C (multi-robot tags). In all but one test, Mode E (multi-robot MPE)
performed even better than Mode D. On average, the inclusion of additional markerless
observations consistently lowered the localization error (C 0.926m, D 0.785m, E 0.730m).
With better training and probability based covariace models, we expect future iterations
of the system to perform even better.

For the evaluation of the SLAM performance, the accuracy of the GNSS-derived
ground truth was sufficient. The magnitude of the explored distances (trajectory diameters
15m∼40m) and of the maximum localization errors (1.5m∼3m) exceeded the inaccuracy
of the ground truth measurements, therefore the evaluation method is valid. However,
more test runs with precise absolute ground truth information should be recorded to elim-
inate the need for manual ground truth alignment and to solidify the statistical significance
of the results.

8.3. Limitations

We have demonstrated the performance of the system and the improvements that are
attributed to our contribution of the markerless vision component. However, there are still
markable limitations that need addressing. The trained models differ slightly from the
real-world robots. The exclusion of the robot heads in training, while significantly sim-
plifying the workflow, introduced inaccuracies during execution. In that tradeoff between
ease of development and model realism, we would rescind that decision and opt to use
separate models for LRU and LRU2 in the future. The rotational ambiguity of the rovers
may be mitigated, if the two rover heads are included and used for their visual features.

69

8. Discussion

The applied covariance model for the markerless observations is not mathematically
accurate, and instead serves as an upper bound, as of now. If the isolated pose estimation
is improved, so should the covariance model.

The implementation of the graph-based multi-robot SLAM solution for recorded runs
currently only supports one-way active observations, meaning that an observation of
LRU2 by LRU will correct LRU’s state but not LRU2’s state (and vice versa). This is
due to the loading of previous multi-robot sessions into the current session and the way
the two SLAM graphs are interconneted during runtime. The live performance of the
multi-robot system is unaffected by this limitation and does allow every observation to
correct the states of both the observer and the observed. For testing with recorded runs,
the system should be extended to also have this capability.

70

9. Conclusion

9.1. Summary

In this thesis, we documented our work developing and extending a markerless vision
based multi-robot SLAM solution over the span of a master thesis project. We discussed
our conceptual and methodological design decisions, explaining the assumptions and ab-
stractions that we made to achieve this goal in the afforded time. We then presented our
main contributions, a markerless object detection and pose estimation pipeline integrated
into a larger multi-robot SLAM system, and described its implementation and training
with synthetic data. For experimental validation, we used synthetic data generated from
simulation and rendering software, as well as real-world data recorded on an outdoor
space-analogue multi-robot mission. Detailed steps of the evaluation process were de-
scribed and the results presented. Through experimental validation with both synthetic
and real-world data, we were able to establish the viability of the system and identify
aspects that can be improved.

9.2. Outlook

In future work, the markerless vision component should be further improved. New
and more expansive training data should be generated. We suggest the use of unique
object models and classes for each robot of the multi-robot team (Lander, LRU, LRU2,
ARDEA). The training models should more closely resemble the real robots, regarding
accessories and textures. The spread of camera viewpoints should be representative of the
real-world use case, considering ARDEA’s unique movement. The new dataset should
contain 10 000 – 20 000 annotated samples.

With better trained models, the fine tuning of the vision pipeline stages should be
revisited, as detection rate and robustness to overconfidence are expected to improve. For
evaluating the improved system, real-world indoor and outdoor runs should be recorded
with high-quality ground truth from local sensors, such as Vicon. By using statistical
analysis of the evaluation results, a probability-based model for the covarince estimation
of markerless observations should be implemented.

Further down the road, the markerless vision component should be extended to work
on articulated robot models. By estimating separate poses for articulated robot segments,
such as the body, head, arm, and TCP, more visual image features can be harnessed and
more helpful constraints can be added, even when the full robot body is not in view. Fol-
lowing these steps, we look forward to continued improvements to the system, furthering
innovation in the practical realization of SLAM solutions, and making valuable contribu-
tions to the field.

71

Bibliography

[1] German Aerospace Center (DLR). 2022.

[2] German Aerospace Center (DLR). LIVE von der ILA Berlin: Robotik-Mission ARCHES
erkundet „Quasi-Mond“ Ätna. 2022. URL: https://www.youtube.com/
watch?v=C5SwAu4y5tk (visited on 07/26/2025).

[3] German Aerospace Center (DLR). Roboter LRU1. 2022. URL: https://www.
dlr.de/de/aktuelles/nachrichten/2022/03/20220701_roboter-
team-uebt-monderkundung-auf-dem-aetna (visited on 07/26/2025).

[4] German Aerospace Center (DLR). Roboter LRU2 nimmt eine Bodenprobe. 2022.
URL: https://www.dlr.de/de/aktuelles/nachrichten/2022/
03/20220701_roboter-team-uebt-monderkundung-auf-dem-
aetna (visited on 07/26/2025).

[5] Doug Adler. “How China’s Chang’e 6 mission snagged the first samples of the
Moon’s farside”. In: Astronomy Magazine (July 25, 2024). URL: https : / /
www.astronomy.com/space-exploration/how-chinas-change-
6 - mission - snagged - the - first - samples - of - the - moons -
farside/ (visited on 07/30/2025).

[6] Yannick Bukschat and Marcus Vetter. EfficientPose: An efficient, accurate and scal-
able end-to-end 6D multi object pose estimation approach. 2020. arXiv: 2011.
04307 [cs.CV]. URL: https://arxiv.org/abs/2011.04307.

[7] Lukas Burkhard et al. “Collaborative Multi-Rover Crater Exploration: Concept and
Results from the ARCHES Analog Mission”. In: 2024 IEEE Aerospace Confer-
ence. 2024, pp. 1–14. DOI: 10.1109/AERO58975.2024.10521301.

[8] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. “COCO-Stuff: Thing and Stuff
Classes in Context”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). June 2018.

[9] Carlos Campos et al. “Orb-slam3: An accurate open-source library for visual, visual–
inertial, and multimap slam”. In: IEEE transactions on robotics 37.6 (2021), pp. 1874–
1890.

[10] Alicia Cermak. Where is Perseverance? NASA, Apr. 7, 2025. URL: https://
science.nasa.gov/mission/mars-2020-perseverance/location-
map/ (visited on 11/22/2024).

[11] Nga Teng Chan and Xiao He. “A Review of Control Techniques For Lunar Rovers”.
In: Proceedings of the 2024 2nd International Conference on Frontiers of Intelli-
gent Manufacturing and Automation. CFIMA ’24. Association for Computing Ma-
chinery, 2025, pp. 643–649. ISBN: 9798400710681. DOI: 10.1145/3704558.
3704563. URL: https://doi.org/10.1145/3704558.3704563.

73

https://www.youtube.com/watch?v=C5SwAu4y5tk
https://www.youtube.com/watch?v=C5SwAu4y5tk
https://www.dlr.de/de/aktuelles/nachrichten/2022/03/20220701_roboter-team-uebt-monderkundung-auf-dem-aetna
https://www.dlr.de/de/aktuelles/nachrichten/2022/03/20220701_roboter-team-uebt-monderkundung-auf-dem-aetna
https://www.dlr.de/de/aktuelles/nachrichten/2022/03/20220701_roboter-team-uebt-monderkundung-auf-dem-aetna
https://www.dlr.de/de/aktuelles/nachrichten/2022/03/20220701_roboter-team-uebt-monderkundung-auf-dem-aetna
https://www.dlr.de/de/aktuelles/nachrichten/2022/03/20220701_roboter-team-uebt-monderkundung-auf-dem-aetna
https://www.dlr.de/de/aktuelles/nachrichten/2022/03/20220701_roboter-team-uebt-monderkundung-auf-dem-aetna
https://www.astronomy.com/space-exploration/how-chinas-change-6-mission-snagged-the-first-samples-of-the-moons-farside/
https://www.astronomy.com/space-exploration/how-chinas-change-6-mission-snagged-the-first-samples-of-the-moons-farside/
https://www.astronomy.com/space-exploration/how-chinas-change-6-mission-snagged-the-first-samples-of-the-moons-farside/
https://www.astronomy.com/space-exploration/how-chinas-change-6-mission-snagged-the-first-samples-of-the-moons-farside/
https://arxiv.org/abs/2011.04307
https://arxiv.org/abs/2011.04307
https://arxiv.org/abs/2011.04307
https://doi.org/10.1109/AERO58975.2024.10521301
https://science.nasa.gov/mission/mars-2020-perseverance/location-map/
https://science.nasa.gov/mission/mars-2020-perseverance/location-map/
https://science.nasa.gov/mission/mars-2020-perseverance/location-map/
https://doi.org/10.1145/3704558.3704563
https://doi.org/10.1145/3704558.3704563
https://doi.org/10.1145/3704558.3704563

Bibliography

[12] Phil Davis. Mars Exploration Rovers: Spirit and Opportunity. NASA, Apr. 7, 2025.
URL: https://science.nasa.gov/mission/mars-exploration-
rovers-spirit-and-opportunity/ (visited on 07/30/2025).

[13] Maximilian Denninger et al. “BlenderProc2: A Procedural Pipeline for Photoreal-
istic Rendering”. In: Journal of Open Source Software 8.82 (2023), p. 4901. DOI:
10.21105/joss.04901. URL: https://doi.org/10.21105/joss.
04901.

[14] H. Durrant-Whyte and T. Bailey. “Simultaneous localization and mapping: part I”.
In: IEEE Robotics & Automation Magazine 13.2 (2006), pp. 99–110. DOI: 10.
1109/MRA.2006.1638022.

[15] Mike Folk et al. “An overview of the HDF5 technology suite and its applications”.
In: Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases. AD ’11.
Uppsala, Sweden: Association for Computing Machinery, 2011, pp. 36–47. ISBN:
9781450306140. DOI: 10.1145/1966895.1966900. URL: https://doi.
org/10.1145/1966895.1966900.

[16] Blender Foundation. Blender About. URL: https://www.blender.org/
about/ (visited on 07/27/2025).

[17] Dimitrios Geromichalos et al. “SLAM for autonomous planetary rovers with global
localization”. In: Journal of Field Robotics 37.5 (2020), pp. 830–847. DOI: https:
//doi.org/10.1002/rob.21943. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/rob.21943. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/rob.21943.

[18] Riccardo Giubilato et al. “Challenges of SLAM in Extremely Unstructured Envi-
ronments: The DLR Planetary Stereo, Solid-State LiDAR, Inertial Dataset”. In:
IEEE Robotics and Automation Letters 7.4 (2022), pp. 8721–8728. DOI: 10 .
1109/LRA.2022.3188118.

[19] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. “Improved Techniques
for Grid Mapping With Rao-Blackwellized Particle Filters”. In: IEEE Transactions
on Robotics 23.1 (2007), pp. 34–46. DOI: 10.1109/TRO.2006.889486.

[20] Giorgio Grisetti et al. “A Tutorial on Graph-Based SLAM”. In: IEEE Intelligent
Transportation Systems Magazine 2.4 (2010), pp. 31–43. DOI: 10.1109/MITS.
2010.939925.

[21] Tomas Hodan et al. “BOP: Benchmark for 6D Object Pose Estimation”. In: Pro-
ceedings of the European Conference on Computer Vision (ECCV). Sept. 2018.

[22] “How China’s Chang’e 6 mission snagged the first samples of the Moon’s farside”.
In: (July 25, 2024). URL: https://english.spacechina.com/n17212/
c4181248/content.html?utm_source=chatgpt.com (visited on
07/30/2025).

[23] Ammar Husain et al. “Mapping planetary caves with an autonomous, heteroge-
neous robot team”. In: 2013 IEEE Aerospace Conference. 2013, pp. 1–13. DOI:
10.1109/AERO.2013.6497363.

74

https://science.nasa.gov/mission/mars-exploration-rovers-spirit-and-opportunity/
https://science.nasa.gov/mission/mars-exploration-rovers-spirit-and-opportunity/
https://doi.org/10.21105/joss.04901
https://doi.org/10.21105/joss.04901
https://doi.org/10.21105/joss.04901
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1145/1966895.1966900
https://www.blender.org/about/
https://www.blender.org/about/
https://doi.org/https://doi.org/10.1002/rob.21943
https://doi.org/https://doi.org/10.1002/rob.21943
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21943
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21943
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21943
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21943
https://doi.org/10.1109/LRA.2022.3188118
https://doi.org/10.1109/LRA.2022.3188118
https://doi.org/10.1109/TRO.2006.889486
https://doi.org/10.1109/MITS.2010.939925
https://doi.org/10.1109/MITS.2010.939925
https://english.spacechina.com/n17212/c4181248/content.html?utm_source=chatgpt.com
https://english.spacechina.com/n17212/c4181248/content.html?utm_source=chatgpt.com
https://doi.org/10.1109/AERO.2013.6497363

Bibliography

[24] Tomás de J. Mateo Sanguino. “50 years of rovers for planetary exploration: A ret-
rospective review for future directions”. In: Robotics and Autonomous Systems 94
(2017), pp. 172–185. ISSN: 0921-8890. DOI: https://doi.org/10.1016/
j.robot.2017.04.020. URL: https://www.sciencedirect.com/
science/article/pii/S0921889016306030.

[25] Alana Johnson and Grey Hautaluoma. “NASA’s Ingenuity Mars Helicopter Suc-
ceeds in Historic First Flight”. In: (Apr. 19, 2021). URL: https://www.nasa.
gov/news-release/nasas-ingenuity-mars-helicopter-succeeds-
in-historic-first-flight/ (visited on 07/30/2025).

[26] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. “iSAM: Incremental
smoothing and mapping”. In: IEEE Transactions on Robotics 24.6 (2008), pp. 1365–
1378.

[27] Michael Kaess et al. “iSAM2: Incremental smoothing and mapping using the Bayes
tree”. In: The International Journal of Robotics Research 31.2 (2012), pp. 216–235.

[28] Jan Kallwies, Bianca Forkel, and Hans-Joachim Wuensche. “Determining and Im-
proving the Localization Accuracy of AprilTag Detection”. In: 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). May 2020, pp. 8288–8294.
DOI: 10.1109/ICRA40945.2020.9197427.

[29] J.J. Leonard and H.F. Durrant-Whyte. “Simultaneous map building and localiza-
tion for an autonomous mobile robot”. In: Proceedings IROS ’91:IEEE/RSJ Inter-
national Workshop on Intelligent Robots and Systems ’91. 1991, 1442–1447 vol.3.
DOI: 10.1109/IROS.1991.174711.

[30] Steven Macenski et al. “Robot Operating System 2: Design, architecture, and uses
in the wild”. In: Science Robotics 7.66 (2022), eabm6074. DOI: 10.1126/scirobotics.
abm6074. URL: https://www.science.org/doi/abs/10.1126/
scirobotics.abm6074.

[31] Michael Montemerlo et al. “FastSLAM 2.0: An improved particle filtering algo-
rithm for simultaneous localization and mapping that provably converges”. In: IJ-
CAI. Vol. 3. 2003. 2003, pp. 1151–1156.

[32] Michael Montemerlo et al. “FastSLAM: A factored solution to the simultaneous
localization and mapping problem”. In: Aaai/iaai 593598.2 (2002), pp. 593–598.

[33] Marcus G. Müller et al. “A Photorealistic Terrain Simulation Pipeline for Unstruc-
tured Outdoor Environments”. In: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. 2021.

[34] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. “ORB-SLAM:
A versatile and accurate monocular SLAM system”. In: IEEE transactions on
robotics 31.5 (2015), pp. 1147–1163.

[35] Raul Mur-Artal and Juan D Tardós. “Orb-slam2: An open-source slam system for
monocular, stereo, and rgb-d cameras”. In: IEEE transactions on robotics 33.5
(2017), pp. 1255–1262.

[36] Edwin Olson. “AprilTag: A robust and flexible visual fiducial system”. In: 2011
IEEE International Conference on Robotics and Automation. 2011, pp. 3400–3407.
DOI: 10.1109/ICRA.2011.5979561.

75

https://doi.org/https://doi.org/10.1016/j.robot.2017.04.020
https://doi.org/https://doi.org/10.1016/j.robot.2017.04.020
https://www.sciencedirect.com/science/article/pii/S0921889016306030
https://www.sciencedirect.com/science/article/pii/S0921889016306030
https://www.nasa.gov/news-release/nasas-ingenuity-mars-helicopter-succeeds-in-historic-first-flight/
https://www.nasa.gov/news-release/nasas-ingenuity-mars-helicopter-succeeds-in-historic-first-flight/
https://www.nasa.gov/news-release/nasas-ingenuity-mars-helicopter-succeeds-in-historic-first-flight/
https://doi.org/10.1109/ICRA40945.2020.9197427
https://doi.org/10.1109/IROS.1991.174711
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://doi.org/10.1109/ICRA.2011.5979561

Bibliography

[37] Andrew Parsonson. “Airbus Demonstrates Autonomous Sample Collection for Mars
Missions”. In: (Sept. 10, 2024). URL: https://europeanspaceflight.
com/airbus-demonstrates-autonomous-sample-collection-
for-mars-missions/ (visited on 07/30/2025).

[38] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA
workshop on open source software. Vol. 3. 3.2. Kobe. 2009, p. 5.

[39] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection.
2016. arXiv: 1506.02640 [cs.CV]. URL: https://arxiv.org/abs/
1506.02640.

[40] Paul Rincon. “China lands Jade Rabbit robot rover on Moon”. In: BBC (Dec. 14,
2013). URL: https://www.bbc.com/news/science-environment-
25356603 (visited on 07/30/2025).

[41] Open Robotics. ROS 2 Documentation. 2025. URL: https://docs.ros.org/
en/foxy/index.html (visited on 07/27/2025).

[42] Open Robotics. ROS Documentation. 2025. URL: https://wiki.ros.org/
(visited on 07/27/2025).

[43] Martin J Schuster et al. “Distributed stereo vision-based 6D localization and map-
ping for multi-robot teams”. In: Journal of Field Robotics 36.2 (2019), pp. 305–
332.

[44] Martin J. Schuster et al. “The ARCHES Space-Analogue Demonstration Mission:
Towards Heterogeneous Teams of Autonomous Robots for Collaborative Scientific
Sampling in Planetary Exploration”. In: IEEE Robotics and Automation Letters 5.4
(2020), pp. 5315–5322. DOI: 10.1109/LRA.2020.3007468.

[45] Martin Sundermeyer et al. “Implicit 3d orientation learning for 6d object detection
from rgb images”. In: Proceedings of the european conference on computer vision
(ECCV). 2018, pp. 699–715.

[46] “To the Hadley Plains”. In: Lunar and Planetary Rovers: The Wheels of Apollo
and the Quest for Mars. New York, NY: Springer New York, 2007, pp. 85–128.
ISBN: 978-0-387-68547-2. DOI: 10.1007/978-0-387-68547-2_4. URL:
https://doi.org/10.1007/978-0-387-68547-2_4.

[47] Maximilian Ulmer et al. “6D Object Pose Estimation from Approximate 3D Mod-
els for Orbital Robotics”. In: 2023 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). 2023, pp. 10749–10756. DOI: 10 . 1109 /
IROS55552.2023.10341511.

[48] Vandi Verma et al. “Autonomous robotics is driving Perseverance rover’s progress
on Mars”. In: Science Robotics 8.80 (2023), eadi3099. DOI: 10.1126/scirobotics.
adi3099. eprint: https://www.science.org/doi/pdf/10.1126/
scirobotics.adi3099. URL: https://www.science.org/doi/
abs/10.1126/scirobotics.adi3099.

[49] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. YOLOv7: Train-
able bag-of-freebies sets new state-of-the-art for real-time object detectors. 2022.
arXiv: 2207.02696 [cs.CV]. URL: https://arxiv.org/abs/2207.
02696.

76

https://europeanspaceflight.com/airbus-demonstrates-autonomous-sample-collection-for-mars-missions/
https://europeanspaceflight.com/airbus-demonstrates-autonomous-sample-collection-for-mars-missions/
https://europeanspaceflight.com/airbus-demonstrates-autonomous-sample-collection-for-mars-missions/
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://www.bbc.com/news/science-environment-25356603
https://www.bbc.com/news/science-environment-25356603
https://docs.ros.org/en/foxy/index.html
https://docs.ros.org/en/foxy/index.html
https://wiki.ros.org/
https://doi.org/10.1109/LRA.2020.3007468
https://doi.org/10.1007/978-0-387-68547-2_4
https://doi.org/10.1007/978-0-387-68547-2_4
https://doi.org/10.1109/IROS55552.2023.10341511
https://doi.org/10.1109/IROS55552.2023.10341511
https://doi.org/10.1126/scirobotics.adi3099
https://doi.org/10.1126/scirobotics.adi3099
https://www.science.org/doi/pdf/10.1126/scirobotics.adi3099
https://www.science.org/doi/pdf/10.1126/scirobotics.adi3099
https://www.science.org/doi/abs/10.1126/scirobotics.adi3099
https://www.science.org/doi/abs/10.1126/scirobotics.adi3099
https://arxiv.org/abs/2207.02696
https://arxiv.org/abs/2207.02696
https://arxiv.org/abs/2207.02696

Bibliography

[50] J. Wang et al. “COMPUTER VISION IN THE TELEOPERATION OF THE YUTU-
2 ROVER”. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences V-3-2020 (2020), pp. 595–602. DOI: 10.5194/isprs-
annals- V- 3- 2020- 595- 2020. URL: https://isprs- annals.
copernicus.org/articles/V-3-2020/595/2020/.

[51] John Wang and Edwin Olson. “AprilTag 2: Efficient and robust fiducial detection”.
In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2016, pp. 4193–4198. DOI: 10.1109/IROS.2016.7759617.

[52] Armin Wedler et al. “LRU-lightweight rover unit”. In: Proc. of the 13th Symposium
on Advanced Space Technologies in Robotics and Automation (ASTRA). 2015.

77

https://doi.org/10.5194/isprs-annals-V-3-2020-595-2020
https://doi.org/10.5194/isprs-annals-V-3-2020-595-2020
https://isprs-annals.copernicus.org/articles/V-3-2020/595/2020/
https://isprs-annals.copernicus.org/articles/V-3-2020/595/2020/
https://doi.org/10.1109/IROS.2016.7759617

Appendix

A. SLAM Localization Trajectories

A.1. Run 2

A.1.1. Integration Mode A

Figure A.1.: LRU and LRU2 trajectories in Run 2: Integration Mode A

79

9. Appendix

A.1.2. Integration Mode B

Figure A.2.: LRU and LRU2 trajectories in Run 2: Integration Mode B

80

A. SLAM Localization Trajectories

A.1.3. Integration Mode C

Figure A.3.: LRU and LRU2 trajectories in Run 2: Integration Mode C

81

9. Appendix

A.1.4. Integration Mode D

Figure A.4.: LRU and LRU2 trajectories in Run 2: Integration Mode D

82

A. SLAM Localization Trajectories

A.1.5. Integration Mode E

Figure A.5.: LRU and LRU2 trajectories in Run 2: Integration Mode E

83

9. Appendix

A.2. Run 3

A.2.1. Integration Mode A

Figure A.6.: LRU and LRU2 trajectories in Run 3: Integration Mode A

84

A. SLAM Localization Trajectories

A.2.2. Integration Mode B

Figure A.7.: LRU and LRU2 trajectories in Run 3: Integration Mode B

85

9. Appendix

A.2.3. Integration Mode C

Figure A.8.: LRU and LRU2 trajectories in Run 3: Integration Mode C

86

A. SLAM Localization Trajectories

A.2.4. Integration Mode D

Figure A.9.: LRU and LRU2 trajectories in Run 3: Integration Mode D

87

9. Appendix

A.2.5. Integration Mode E

Figure A.10.: LRU and LRU2 trajectories in Run 3: Integration Mode E

88

A. SLAM Localization Trajectories

A.3. Run 5

A.3.1. Integration Mode A

Figure A.11.: LRU and LRU2 trajectories in Run 3: Integration Mode A

89

9. Appendix

A.3.2. Integration Mode B

Figure A.12.: LRU and LRU2 trajectories in Run 3: Integration Mode B

90

A. SLAM Localization Trajectories

A.3.3. Integration Mode C

Figure A.13.: LRU and LRU2 trajectories in Run 3: Integration Mode C

91

9. Appendix

A.3.4. Integration Mode D

Figure A.14.: LRU and LRU2 trajectories in Run 3: Integration Mode D

92

A. SLAM Localization Trajectories

A.3.5. Integration Mode E

Figure A.15.: LRU and LRU2 trajectories in Run 3: Integration Mode E

93

List of Figures

3.1. Lander, LRU, LRU2, and ARDEA on Mount Etna in 2022 [1] 9
3.2. Lander module on Mount Etna in 2022 [2] 10
3.3. LRU on Mount Etna in 2022 [3] . 11
3.4. LRU2 taking a ground sample on Mount Etna in 2022 [4] 12

4.1. CAD models of lander, LRU, and LRU2. 15
4.2. Truncated and colorized CAD models of lander and headless LRU. 16
4.3. Example images from BPROC_4K. 17
4.4. Example images from OAISYS_4K. 18
4.5. Example input segments and estimated features. TOP TO BOTTOM:

Augmented input segment, estimated mask, target mask, estimated nor-
malized coordinates, target normalized coordinates, estimated mesh zone
segmentation, target mesh zone segmentation. 22

4.6. System architecture. BLUE: Object detection stage, PURPLE: Detection
filtering stage, RED: Pose estimation stage, GREEN: Information flow. . . 25

7.1. BPROC_4K results: Sample-wise absolute translational pose error t over
object distance d. At far distances, a linear dependency can be observed. . 48

7.2. BPROC_4K results: Sample-wise yaw error for Lander and LRU. Prob-
ability distribution functions (PDF) are normalized wrapped Gaussians.
Lander error is far greater than LRU error. Due to rotational symmetries,
some poses are rotated with slight groupings at ±90° and 180°. 48

7.3. OAISYS_4K results: Sample-wise absolute translational pose error t over
object distance d. 49

7.4. OAISYS_4K results: Sample-wise yaw error for Lander and LRU. Prob-
ability distribution functions (PDF) are normalized wrapped Gaussians. . 49

7.5. COMBINED_8K results: Sample-wise absolute translational pose error t
over object distance d. 50

7.6. COMBINED_8K results: Sample-wise yaw error for Lander and LRU.
Probability distribution functions (PDF) are normalized wrapped Gaussians. 50

7.7. Real-world pose estimation results in Run 2: Sample-wise absolute trans-
lational pose error t over object distance d. The results are ordered by
observation type. 52

7.8. Real-world pose estimation results in Run 2: Sample-wise yaw error. The
results are ordered by observation type. Probability distribution functions
(PDF) are normalized wrapped Gaussians. 53

7.9. Real-world pose estimation results in Run 3: Sample-wise absolute trans-
lational pose error t over object distance d. The results are ordered by
observing robot (LRU, LRU2) and observation type. 54

7.10. Real-world pose estimation results in Run 3: Sample-wise yaw error. The
results are ordered by observing robot (LRU, LRU2) and observation type.
Probability distribution functions (PDF) are normalized wrapped Gaussians. 54

95

List of Figures

7.11. Real-world pose estimation results in Run 5: Sample-wise absolute trans-
lational pose error t over object distance d. The results are ordered by
observing robot (LRU, LRU2) and observation type. 56

7.12. Real-world pose estimation results in Run 5: Sample-wise yaw error. The
results are ordered by observing robot (LRU, LRU2) and observation type.
Probability distribution functions (PDF) are normalized wrapped Gaussians. 56

7.13. Real-world pose estimation results in all runs: Sample-wise absolute trans-
lational pose error t over object distance d. The results are ordered by
observing robot (LRU, LRU2) and observation type. 58

7.14. Real-world pose estimation results in all runs: Sample-wise yaw error.
The results are ordered by observing robot (LRU, LRU2) and observation
type. Probability distribution functions (PDF) are normalized wrapped
Gaussians. 58

7.15. LRU localization error in Run 2, compared by integration modes A – E. . 60
7.16. LRU localization error in Run 3, compared by integration modes A – E. . 61
7.17. LRU2 localization error in Run 3, compared by integration modes A – E. 62
7.18. LRU localization error in Run 5, compared by integration modes A – E. . 63
7.19. LRU2 localization error in Run 5, compared by integration modes A – E. 64

8.1. Robustness of the pose estimator against occlusion: The lander is accu-
rately detected and positioned even when occluded by the environment (a,
b). LRU is accurately detected and positioned even when occluded by the
lander (c). 67

8.2. Vulnerability of the pose estimator against robot modifications: LRU2 is
rotated by 180° due to the arm’s similarity with the mast. 68

8.3. Questioning the ground truth accuracy: Despite the close alignment, the
pose error is supposedly 38.6cm, according to the ground truth. 69

A.1. LRU and LRU2 trajectories in Run 2: Integration Mode A 79
A.2. LRU and LRU2 trajectories in Run 2: Integration Mode B 80
A.3. LRU and LRU2 trajectories in Run 2: Integration Mode C 81
A.4. LRU and LRU2 trajectories in Run 2: Integration Mode D 82
A.5. LRU and LRU2 trajectories in Run 2: Integration Mode E 83
A.6. LRU and LRU2 trajectories in Run 3: Integration Mode A 84
A.7. LRU and LRU2 trajectories in Run 3: Integration Mode B 85
A.8. LRU and LRU2 trajectories in Run 3: Integration Mode C 86
A.9. LRU and LRU2 trajectories in Run 3: Integration Mode D 87
A.10.LRU and LRU2 trajectories in Run 3: Integration Mode E 88
A.11.LRU and LRU2 trajectories in Run 3: Integration Mode A 89
A.12.LRU and LRU2 trajectories in Run 3: Integration Mode B 90
A.13.LRU and LRU2 trajectories in Run 3: Integration Mode C 91
A.14.LRU and LRU2 trajectories in Run 3: Integration Mode D 92
A.15.LRU and LRU2 trajectories in Run 3: Integration Mode E 93

96

List of Tables

4.1. Synthetic Training Sets . 18

6.1. Synthetic Test Sets . 40
6.2. Real-World Test Bags . 40
6.3. Integration modes . 45

7.1. Synthetic Test Results: The results are ordered by training set, test set,
and detected robot. The arrow after a variable indicates whether a higher
(↑) or lower (↓) value is desirable. Comparison between results of the
same category achieved by different trained models. The darker a table
entry, the better the result achieved by this trained model compared to
other trained models. Best results in each category achieved by a trained
model are bold. 51

7.2. Real-world pose estimation results in Run 2: The results are ordered by
observing active robot and detected object. Since the LRU2 recording had
no ground truth, pose errors of LRU2 observations by LRU could not be
quantified. The arrow after a variable indicates whether a higher (↑) or
lower (↓) value is desirable. 53

7.3. Real-world pose estimation results in Run 3: The results are ordered by
observing active robot and detected object. No LRU2 tags were observed
in this run. The arrow after a variable indicates whether a higher (↑) or
lower (↓) value is desirable. 55

7.4. Real-world pose estimation results in Run 5: The results are ordered by
observing active robot and detected object. No LRU tags or LRU2 tags
were observed in this run. The arrow after a variable indicates whether a
higher (↑) or lower (↓) value is desirable. 57

7.5. Real-world pose estimation results in all runs: The results are ordered by
observing active robot and detected object. No LRU2 tags were observed
in any run. The arrow after a variable indicates whether a higher (↑) or
lower (↓) value is desirable. 59

7.6. Mean LRU localization error in Run 2, compared by integration modes A
– E. 60

7.7. Mean LRU and LRU2 localization errors in Run 3, compared by integra-
tion modes A – E. 62

7.8. Mean LRU and LRU2 localization errors in Run 5, compared by integra-
tion modes A – E. 64

7.9. Combined real-world localization error in all runs, compared by integra-
tion modes A – E. Averages are weighted by the active time span of each
robot run. 65

97

List of Algorithms

1. Kabsch-Umeyama Algorithm . 12

99

BibTex Entry of this Thesis

@mastersthesis{Rueggeberg_2025,
author = {Markus Rüggeberg},
editor = {Dr. Riccardo Giubilato},
ipr-thesis = Master Thesis,
keywords = {Robotics; Markerless; Pose Estinmation; Long-Range; Exploration; Lunar
Rover; Multi-Robot; Localization; Mapping, SLAM},
location = {Karlsruhe, Germany},
month = 07,
school = {Karlsruhe Institute of Technology},
title = {Long-Range Markerless Pose Estimation for Planetary Multi-Robot SLAM},
year = {2025}
}

	Front matter
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Motivation
	Approach
	Structure of this Thesis

	State of the Art
	Planetary Robotics
	SLAM
	Markerless Pose Estimation

	Fundamentals
	Robots
	Lander
	LRU
	LRU2

	Poses and Transformations
	Graph-Based SLAM
	Tools and Frameworks
	Blender
	BlenderProc 2
	OAISYS
	YOLO
	DensePose
	ROS 2

	Methods
	Dataset Generation
	CAD Models
	Specific Datasets
	Dataset Overview

	Markerless Vision Pipeline
	Object detection
	Detection Filtering
	Pose Estimation

	SLAM Integration
	SLAM Node Generation
	SLAM Pipeline

	System Overview

	Implementation
	Dataset Generation
	BlenderProc 2
	OAISYS
	Combined

	Model Training
	Vision Pipeline
	Object Detection
	Detection Filtering
	Pose Estimation

	ROS2 Node

	Evaluation
	Evaluation datasets
	Synthetic Test Data
	Real-World Test Data

	Evaluation Metrics
	Ground Truths
	Metric Definitions

	Evaluation Methods
	Synthetic Test Evaluation
	Real-World Test Evaluation

	Results
	Synthetic Test Results
	BPROC_4K Results
	OAISYS_4K Results
	COMBINED_8K Results
	Summarized Results
	Model Selection

	Real-World Test Results
	Real-World Pose Estimation Results
	Real-World SLAM Results

	Discussion
	Pose Estimation Performance
	SLAM Performance
	Limitations

	Conclusion
	Summary
	Outlook

	Bibliography
	Appendix
	SLAM Localization Trajectories
	Run 2
	Run 3
	Run 5

	List of Figures
	List of Tables
	List of Algorithms

