Hasselwander, Samuel and Rettich, Julian and Schmid, Stephan and Siefkes, Tjark (2025) How will future BEV models develop? Market potential of different battery technologies assessed by a ML-based manufacturer agent. Journal of Energy Storage, 131 (A). Elsevier. doi: 10.1016/j.est.2025.117195. ISSN 2352-152X.
|
PDF
- Published version
2MB |
Official URL: https://www.sciencedirect.com/science/article/pii/S2352152X25019085
Abstract
The ramp up of battery electric vehicles is already in full swing, with multiple countries having implemented regulations to defossilize their vehicle fleets. This is leading to a growing number of vehicle models that are becoming increasingly diverse, with even fundamental differences in battery chemistry. However, it is important to understand which energy storage technology will be used in future vehicles in order to recognize and avoid dependencies on raw materials or supply chains at an early stage. By developing a machine learning based manufacturer agent trained on historic vehicle data from models available in Germany and a comprehensive technology and component database, we show that it is possible to predict the market potential of bottom-up calculated future battery electric vehicle models. Our findings align with the current trend towards diversifying vehicle models through the adoption of various cell chemistries. The results indicate that vehicles equipped with lithium iron phosphate or even sodium-ion batteries, particularly those utilizing cell-to-pack technology, demonstrate significant market potential in the near future, especially for small vehicles.
| Item URL in elib: | https://elib.dlr.de/215600/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Document Type: | Article | ||||||||||||||||||||
| Title: | How will future BEV models develop? Market potential of different battery technologies assessed by a ML-based manufacturer agent | ||||||||||||||||||||
| Authors: |
| ||||||||||||||||||||
| Date: | 20 September 2025 | ||||||||||||||||||||
| Journal or Publication Title: | Journal of Energy Storage | ||||||||||||||||||||
| Refereed publication: | Yes | ||||||||||||||||||||
| Open Access: | Yes | ||||||||||||||||||||
| Gold Open Access: | No | ||||||||||||||||||||
| In SCOPUS: | Yes | ||||||||||||||||||||
| In ISI Web of Science: | Yes | ||||||||||||||||||||
| Volume: | 131 | ||||||||||||||||||||
| DOI: | 10.1016/j.est.2025.117195 | ||||||||||||||||||||
| Editors: |
| ||||||||||||||||||||
| Publisher: | Elsevier | ||||||||||||||||||||
| ISSN: | 2352-152X | ||||||||||||||||||||
| Status: | Published | ||||||||||||||||||||
| Keywords: | Battery electric vehicle; Market potential; Technology assessment;Machine learning; Neural network | ||||||||||||||||||||
| HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
| HGF - Program: | Transport | ||||||||||||||||||||
| HGF - Program Themes: | Transport System | ||||||||||||||||||||
| DLR - Research area: | Transport | ||||||||||||||||||||
| DLR - Program: | V VS - Verkehrssystem | ||||||||||||||||||||
| DLR - Research theme (Project): | V - MoDa - Models and Data for Future Mobility_Supporting Services | ||||||||||||||||||||
| Location: | Stuttgart | ||||||||||||||||||||
| Institutes and Institutions: | Institute of Vehicle Concepts > Fahrzeugsysteme und Technologiebewertung | ||||||||||||||||||||
| Deposited By: | Hasselwander, Samuel | ||||||||||||||||||||
| Deposited On: | 13 Aug 2025 11:06 | ||||||||||||||||||||
| Last Modified: | 13 Aug 2025 11:06 |
Repository Staff Only: item control page