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 A B S T R A C T

The ramp up of battery electric vehicles is already in full swing, with multiple countries having implemented 
regulations to defossilize their vehicle fleets. This is leading to a growing number of vehicle models that 
are becoming increasingly diverse, with even fundamental differences in battery chemistry. However, it is 
important to understand which energy storage technology will be used in future vehicles in order to recognize 
and avoid dependencies on raw materials or supply chains at an early stage.

By developing a machine learning based manufacturer agent trained on historic vehicle data from models 
available in Germany and a comprehensive technology and component database, we show that it is possible to 
predict the market potential of bottom-up calculated future battery electric vehicle models. Our findings align 
with the current trend towards diversifying vehicle models through the adoption of various cell chemistries. The 
results indicate that vehicles equipped with lithium iron phosphate or even sodium-ion batteries, particularly 
those utilizing cell-to-pack technology, demonstrate significant market potential in the near future, especially 
for small vehicles.
1. Introduction

Due to their contribution to climate change, conventional internal 
combustion engine vehicles (ICEVs), which primarily rely on fossil 
fuels, must be replaced with climate-friendly alternatives [1,2]. Bat-
tery electric vehicles (BEVs) present the most promising option for 
passenger transportation, offering high efficiency and no exhaust emis-
sions [3]. This has led to a significant increase in new registrations 
of BEVs in recent years. In 2023, more then half a million BEVs were 
newly registered in Germany, which corresponds to a share of 18% of 
all newly registered passenger cars and an increase of 11% compared 
to 2022 [4,5]. Worldwide, 14 million new vehicles were registered in 
2023, an increase of 35% compared to the previous year, resulting in 
more BEV registrations than ever before [6].

However, these vehicles differ fundamentally from ICEVs in terms 
of their powertrain. While the majority of the value creation of ICEVs 
depends on the combustion engine itself, the battery accounts for up 
to 73% of the powertrain’s value creation potential in battery electric 
vehicles [7]. In order to remain cost-competitive while maintaining the 
same technical characteristics such as range and acceleration, vehicle 
manufacturers (also: original equipment manufacturers, OEMs) are 
increasingly focusing on the further development of battery technolo-
gies. However, batteries can vary significantly from one another [8,
9]. They can be made from various cell chemistries. Nickel-rich cell 
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chemistries such as lithium nickel manganese cobalt oxide (NMC) and 
nickel cobalt aluminum oxide (NCA) currently dominate the vehicle 
market, whereas the market share of so-called lithium iron phosphate 
(LFP) cells, which do not require the use of nickel, cobalt or manganese, 
has risen from 3% to around 30% in the passenger car sector in the 
last 5 years [10]. Despite notable differences between the various key 
performance indicators (KPIs) and raw material needs [11].

Against this background, it is increasingly important to understand 
how future BEV designs will incorporate various components and cell 
chemistries. This includes not only the development of battery size and 
vehicle range but also considerations of vehicle costs and the optimal 
cell chemistries for different vehicle segments. Moreover, understand-
ing these factors is critical to be aware of potential raw material 
and supply chain dependencies, which play a significant role in the 
feasibility and sustainability of battery technologies. It is therefore 
crucial to evaluate the different technologies by their techno-economic 
feasibility in this highly dynamic market development.

To approach this task with both flexibility and adaptability, we 
developed a machine learning based OEM agent, calculating the market 
potential of future BEV energy storage technologies by considering mul-
tiple dynamic technical and economic factors. The OEM agent builds 
on a comprehensive database of technological innovations, bottom-up 
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Fig. 1. Schematic diagram of the machine learning-based manufacturer agent model.
vehicle calculations, and historical data from passenger cars, enabling 
unique insights into emerging market opportunities and challenges. 
Improving our understanding of the potential future diversification of 
the BEV market.

2. Trends of battery electric vehicle technologies

Current cell chemistries continue to be optimized in terms of their 
energy density and production costs. In the case of NMC cells, for exam-
ple, attempts are being made to reduce the more expensive materials 
cobalt and manganese by increasing the nickel content, while at the 
same time increasing the energy density of the cell. In combination with 
a silicon-doped anode, this could lead to energy densities of up to 1000 
Wh/l [11]. In the case of LFP cells, attempts are being made to improve 
the cell voltage and thus also the energy density at cell level by doping 
manganese. OEMs are now focusing not just on optimizing individual 
cell chemistries, but also on how these cells are packaged within 
the battery system. As the traction battery is assembled from active 
materials into electrodes, cells, modules, and finally the battery pack, 
its energy density decreases due to the inclusion of inactive materials 
like films, housings, control units, and cooling systems. Consequently, 
current BEVs achieve a volumetric energy density of about 150 to 250 
Wh/l at the system level, which is about one-third to one-half of the 
cell’s intrinsic energy density [12]. To address this reduction, OEMs are 
working on packing cells more densely, increasing the size of modules, 
or even eliminating modules altogether. This approach, known as cell-
to-pack (CtP), involves installing battery cells directly into the system 
without additional module housings, thereby enhancing the utilization 
of available space [13]. In such systems, the cells are usually firmly 
bonded and are then also able to absorb structural loads [14]. Intrinsi-
cally safe cell chemistries such as LFP are therefore particularly suitable 
for the CtP approach. CtP also opens up market potential for less costly 
sodium-ion (So-Ion) cells, which are initially considered unsuitable for 
automotive use due to their low energy density, but now sufficient 
ranges can also be achieved with these lower energy density cells 
thanks to CtP technology [15–17]. Many international manufacturers 
and start-ups are actively researching solid state batteries (SSBs), which 
promise significantly higher energy density by using metallic lithium as 
the anode [18]. However, due to the high reactivity of lithium, liquid 
electrolytes cannot be used. Consequently, solid electrolytes made of 
polymers, ceramics, or hybrid mixtures of both are being used [19]. 
Despite these advancements, SSBs still face challenges in achieving 
conductivity, stability, scalability, and cost-effectiveness [20,21]. As a 
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result, they remain in the development stage, with commercialization 
not expected in the near future.

To stay within the scope of this paper, we have focused solely on the 
most important parameters related to battery and cell chemistry KPIs. 
An in-depth techno-economic analysis of these based on an extensive 
meta-analysis, expert consultations and teardown analyses is presented 
in [11].

3. Machine learning-based evaluation method

While machine learning models exist for predicting technical param-
eters such as battery temperature [22], state-of-health [23], or range 
estimation [24], none currently assess potential future vehicle models, 
an important task for anticipating technological trends. The OEM agent 
addresses this by estimating the market entry probability of specific 
vehicle and battery technologies. This techno-economic assessment 
combines automatically configured vehicles with various technologies 
and an agent trained on historical passenger car development, focusing 
on customer-relevant parameters such as segment, price, range, and 
weight.

Fig.  1 shows the development process of the OEM agent schemat-
ically. The initial dataset of performance parameters for various cell 
chemistries was compiled into a comprehensive technology database, 
which has since been further developed and updated throughout this 
research. Based on the technology database, an automated design of 
various vehicle configurations is then carried out as an input vari-
able for the ML-based OEM agent, which is explained in more detail 
in Section 3.1. For training of the neural network, historical vehi-
cle data from the vehicle database of the German Automobile Club 
(Allgemeiner Deutscher Automobil-Club e.V., ADAC) is used [25]. This 
dataset, comprising more than 40.000 vehicles, serves as a basis to map 
the development trends of various vehicle-specific parameters. In the 
course of data preparation, trends in passenger vehicle development 
were derived using regression analyses as described in Section 3.2 
and passed to the OEM agent as an additional input variable. To 
optimize the performance of the ML-based OEM agent, three methods 
were investigated: Neural Networks, K-Nearest Neighbors (KNN), and 
Binary Classification using Logistic Regression. This comparative eval-
uation aimed to identify the most effective approach for the agent’s 
decision-making process.



S. Hasselwander et al. Journal of Energy Storage 131 (2025) 117195 
Table 1
Model assumption of the most important key performance indicators (KPI) of cell chemistries of batteries for electric vehicles at cell level.
 KPI Unit Year NMC811 LFP SSB So-Ion Source  
 

Gravimetric energy density Wh/kg

2020 280 185 – –

[11]

 
 2025 315 202.5 – 160  
 2030 350 220 400 200  
 2035 350 220 400 200  
 2040 350 220 400 200  
 

Volumetric energy density Wh/l

2020 700 430 – –

[11]

 
 2025 825 465 – 280  
 2030 950 500 1000 350  
 2035 950 500 1000 350  
 2040 950 500 1000 350  
 Gravimetric CtP-Factor CtMtPa - 0.60 0.60 0.60 0.60 [12]  
 CtPb – 0.82 – 0.82  
 Volumetric CtP-Factor CtMtP - 0.35 0.35 0.35 0.35 [12]  
 CtP – 0.57 – 0.57  
 

Cell cost EUR/kWh

2020 107 96 750 357

[11,26]

 
 2025 89 79 264 126  
 2030 70 60 105 50  
 2035 67 59 96 48  
 2040 64 58 88 46  
a CtMtP = Cell-to-Module-to-Pack.
b CtP = Cell-to-Pack.
3.1. Automated vehicle configuration based on technology database

A comprehensive technology database was established as the foun-
dation for the automated design and configuration of possible future 
passenger vehicles, serving as one main input for the OEM agent. 
The database is organized in a hierarchical structure, comprising four 
main dimensions that categorize data according to the technological 
components of battery, power electronics, electric motor, and general 
assumptions about the vehicle, which can be flexibly configured in 
three different segments: small, medium and large. Each dataset con-
tains detailed information on technical or physical quantities, including 
value, unit, data source, and author. This structured approach enables 
efficient tracing of information and validation of its accuracy. Utilizing 
object-oriented data management principles, a class-based framework 
was developed to represent each technology component, promoting 
clear structuring, modularity, re-usability, and extensibility. Below is 
a list of the technical information that has been assumed regarding the 
different battery technologies, electric motors and the vehicle itself.

The database includes four cell chemistries: lithium nickel man-
ganese cobalt oxide (NMC) with a 80% Ni, 10% Mn, and 10% Co 
composition; lithium iron phosphate (LFP); solid-state batteries (SSB); 
and sodium-ion battery cells. The model assumptions from [11] are 
used regarding the values of gravimetric and volumetric energy density 
for the years 2020 and 2030. The values for 2025 are determined using 
linear interpolation. A conservative assumption is made for the years 
after 2030, meaning that the improvement in energy density stagnates 
and retains its value. Table  1 shows the assumed KPIs as used for the 
vehicle configurations.

The gravimetric and volumetric cell-to-pack (CtP) factors, in other 
words the ratio of usable energy at cell level to overall usable energy 
of the traction battery, are based on the average value across various 
teardown analyses of available vehicle models done by A2Mac1 [12]. 
In addition to the conventional cell-to-module-to-pack (CtMtP) tech-
nology, we also considered the direct integration of the battery cells 
into the pack. This so called cell-to-pack technology results in a higher 
CtP factor or degree of utilization of the energy density at system 
level due to the lower number of inactive materials. Our cost as-
sumptions for battery cells are based on an own techno-economic 
analysis, incorporating insights from literature reviews, expert input, 
and teardown assessments [11]. For the ramp-up and the period in 
between the base years, we have relied on the cost trajectories de-
veloped by BloombergNEF [27], which describe the expected cost 
3 
development of new battery chemistries. A more detailed breakdown 
of these projections can be found in [26].

As the focus of this paper is on the development of energy storage 
technologies, the technical data of the three different electric motors 
considered: permanent magnet synchronous motor (PMSM); current 
excited synchronous motor (CESM); and induction or asynchronous 
motor (ASM) are listed in Table  A.2 in the appendix for reasons of 
space.

The same applies to the general vehicle parameters which are listed 
in Table  A.3 in the appendix. We considered vehicles in the small seg-
ment (e.g. Renault Zoe), medium segment (VW ID.3) and large segment 
(Mercedes EQS). Based on the model assumptions outlined in [11], the 
technical specifications in Table  A.3 were derived. Assuming continu-
ous advancements in efficiency, including e-motor transmission, power 
electronics, and coefficient of friction, we accounted for improvements 
across future vehicle generations. For intermediate years, data was 
extrapolated via linear interpolation.

In order to be able to evaluate the entire spectrum of future vehicle 
concepts with the specially developed OEM agent described in this 
paper, the variety of possible models must first be generated and 
analyzed. This is done by linking all possible combinations of the 
components contained in the technology database and thus compiling 
new unique vehicle models for the various support years as displayed 
in Fig.  2.

In addition to the battery type, e.g. NMC or LFP, the CtP technology 
is also taken into account in the vehicle configuration. Based on [26], 
it is assumed that this is primarily used for intrinsically safe cell 
chemistries such as LFP or So-Ion. As described in [11], the battery 
capacity results from the available battery volume of the corresponding 
vehicle segment. In order to reflect the reality of the vehicle market, 
in addition to the maximum possible battery capacity, vehicles are also 
configured that have a slightly reduced capacity and therefore a shorter 
range. Resulting in standard range (SR) and long range (LR) vehicle 
models. The latter fully utilize the available installation space for the 
use of batteries. Furthermore, up to two different electric motors can 
be installed per vehicle. The modular design of the OEM agent enables 
easy integration of new components, so different power electronics will 
be included in the next iteration.

The model then automatically calculates the energy consumption 
and vehicle range in the worldwide harmonized light vehicles test 
procedure (WLTP) for each vehicle configuration, as described in [11]. 
A bottom-up cost calculation is performed alongside the technological 
evaluation to determine vehicle costs based on segment, chemistry and 
powertrain technology.
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Fig. 2. Summary of all possible combinations of the technology components currently included in the database. The orange example shows a 2025 medium-size BEV with NMC 
cells, one PMSM, one ASM, and a long-range battery. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3.2. Implementation of manufacturer agent

The aim of the developed neural network is to calculate the proba-
bility of the market entry year of new vehicles based on a wide range 
of input data. This data includes the bottom-up calculated specific 
characteristics of the vehicles such as battery capacity, vehicle weight, 
WLTP range and vehicle price. However, it is important to emphasize 
that the network can be flexibly configured to obtain different target 
values depending on the specific question, or to use even more specific 
input data. For example, the same model structure and approach can be 
used to assign possible future vehicle models to different manufacturer 
groups.

The implemented neural network consists of a multilayer feed-
forward neural network implemented using the Keras library with 
TensorFlow as backend. The architecture includes several dense layers, 
the number and the size of which were determined based on prelimi-
nary experiments to optimize model performance. The input layer takes 
in the pre-processed vehicle data, while the output layer provides the 
probability for each possible year of market entry. The model consists 
of several layers: an input layer which consists of 20 neurons and uses 
a linear activation function, an hidden layer which also consists of 20 
neurons and uses a linear activation function and an output layer which 
uses a sigmoidal activation function to calculate the probabilities for 
different years.

The model utilizes the Adam optimizer and binary cross entropy 
as its loss function. In order to be able to use the neural network 
as a classifier, a training data set is generated, based on the ADAC 
vehicle database [25], reflecting the expected trends in various vehicle 
parameters for future years. This was achieved through regression 
analysis of historical vehicle data, taking into account both technical 
and economic factors, such as cost developments. The input parameters 
were categorized into two types: categorical (e.g., used cell chemistry) 
and numerical (e.g., vehicle range). We focused on the latter type, as 
they allow for temporal correlations, and selected the following key 
metrics based on an extensive parameter analysis: battery capacity, 
vehicle range, weight and list price.

While numerical values can be extrapolated using regression meth-
ods, simply summarizing all historical vehicle data is insufficient for 
predicting trends in vehicle technology variables. To effectively analyze 
these trends, it is necessary to divide the data into distinct segments. 
4 
For this purpose, the historical vehicle data was categorized into the 
three segments: small, medium and large. By doing so, we can isolate 
specific trends within each category that might otherwise be obscured 
by the diversity of the entire dataset.

The ADAC dataset contains data of over 42,000 vehicle models as 
of July 2024. As we are focusing purely on BEVs in this work, vehicles 
with non-battery electric powertrains and other irrelevant or incorrect 
data sets were removed (cf. B). Fig.  3 shows the average yearly key 
metrics of the almost 500 BEV models analyzed. The number above 
each data point represents the count of available models being averaged 
in that specific year.

It becomes clear that there is an upward trend for almost all 
the parameters under consideration. For example, the average battery 
capacity increases from 65 kWh in 2020 to 75 kWh for newly available 
medium-size vehicle models in 2024, while the vehicle range improves 
from around 410 km to nearly 500 km over the period shown. However, 
due to physical constraints such as limited installation space, linear 
growth is unlikely for these characteristics. To better capture this devel-
opment, we use an exponential trend function, enhanced by calculated 
vehicle models derived from literature, as indicated by the data points 
for the year 2030, to accurately represent physical limitations. This 
extension enables a more realistic prediction of model development 
based on current research results.

The OEM agent’s training data is generated using the shown trend 
curves. In order to increase the number of vehicles available for training 
the neural network, data augmentation was carried out. This step is 
essential for enhancing the dataset’s variability and enabling the model 
to better withstand novel, unseen data. All parameters identified as 
relevant (namely: battery capacity, vehicle range, weight and list price) 
are defined as input variables 𝑥, with the exception of the model year, 
as the latter serves as the target variable 𝑦. To optimize the perfor-
mance of the neural network, the input variables are then standardized 
ensuring that all input variables have a similar scale.

4. Analysis and evaluation of developed future vehicle models

4.1. Testing of the manufacturer agent

The input data described above is split into training and test data 
to evaluate the model, with a typical ratio of 80% to 20%. For training, 



S. Hasselwander et al. Journal of Energy Storage 131 (2025) 117195 
Fig. 3. Average yearly key metrics of battery electric vehicle models available in Germany as listed in [25] segmented by vehicle size. The number above each data point represents 
the count of available models being averaged in that specific year. Projected trends are also shown, using regression analysis and calculated vehicle models derived from literature 
to accurately represent physical limitations.
the cross entropy is used as a loss function to minimize the deviation 
between the predicted and actual values. The Adam optimizer of the 
Keras library, a variant of the stochastic gradient descent method, was 
selected due to its efficient and fast convergence characteristics. The 
training comprises 200 epochs. After training, the model is evaluated 
with the test dataset to measure performance and generalization ability. 
The model evaluation is based on the calculation of accuracy, which 
is typically defined as the proportion of test data samples correctly 
classified relative to the total number processed. This metric effectively 
quantifies the model’s ability to accurately predict classification for 
novel, unseen data.

In the training data set, the identified trends in passenger vehi-
cle development based on the ADAC database is combined with the 
bottom up developed future vehicles using the component database 
as described in Section 3.1. With this dataset, the model achieves a 
classification accuracy of 64%. This means that almost two thirds of 
the data records are assigned to the correct year of market entry by 
the highest probability. Fig.  4(a) shows an excerpt from the exam-
ple dataset illustrating the probability of different market entry years 
estimated by the OEM agent for a set of test data during training. 
This prediction was made using the combined ADAC database and the 
bottom up calculated future vehicle dataset, which were configured 
based on the component database, as an input.

It turns out that the existing models in particular are correctly clas-
sified as currently available models. For the two possible future vehicle 
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models shown, market entry years 2030 and 2040 are identified as the 
most promising market entry years. In this case, this also corresponds 
to the years from which the KPIs for configuring the models were 
taken. The model can therefore reliably assign most current vehicles to 
the market entry year. However, the overall accuracy of the model is 
affected if, as shown in test data set 1, the actual year of market entry of 
the e.Go Life is misclassified by one year compared to the correct value 
(i.e., 2020 instead of 2019). The primary reason for this decreased 
accuracy lies in the greater similarity between the currently existing 
models, which makes it harder for the model to distinguish them. 
In contrast, the bottom-up generated vehicles exhibit more significant 
differences in their KPIs, largely due to the longer time period, making 
them easier to differentiate.

4.2. Evaluation of market relevance and trends of future vehicle technolo-
gies

This chapter summarizes the evaluation results of the OEM agent 
with regard to the automatized bottom-up configured future vehicles. It 
looks at the market potential of different cell chemistries in the various 
vehicle segments and also shows how different manufacturer clusters 
could differ in terms of future battery technologies. The model uses 
the weightings it has generated during training to make predictions 
for the vehicle data. These results are assignment probabilities of the 
classes considered on the basis of the given input data as described in 
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Fig. 4. (a) Probability of market entry estimated by the OEM agent for exemplary test data during training with the combined identified trends in passenger vehicle development 
based on the ADAC database and the bottom up developed future vehicles using the component database. The intermediate values are interpolated to obtain an approximately 
continuous probability distribution. (b) Associated excerpt of the test data during the training featuring real information about the vehicle models and the estimated market entry 
year specified by the OEM agent.
Section 3.2. To evaluate market relevance, the model year is chosen 
as the key identifier. The years 2020 to 2040 are considered in 5-year 
intervals.

Fig.  5 shows the estimated market relevance of different example 
vehicle configurations in the small segment for future battery tech-
nologies and model years classified by the OEM agent. The underlying 
vehicle information such as battery capacity, energy consumption, 
range, and vehicle price for the different years is shown in Appendix  C, 
Table  C.4. The vehicles shown correspond to the average of all vehicles 
assigned to that specific criterion. These criteria include year, battery 
chemistry, vehicle version (short range and long range) and number 
of electric motors. In order not to exceed the number of vehicles 
to be presented, only vehicles with one motor are included in the 
analysis for the small vehicle segment based on an analysis of average 
electric motor count of all the currently available vehicle models in this 
segment.

In the small segment as shown in Fig.  5, vehicles with LFP and LFP-
CtP batteries, as well as So-Ion batteries, are expected to have a high 
market potential in the near future. This is mainly caused by their low 
cost and currently also still low range of vehicles in the small segment. 
However, the relevance of the So-Ion battery is declining, while LFP 
(specially the higher range CtP version) will still be one of the relevant 
cell chemistries. NMC cell chemistry will remain of greater importance 
from today until 2030. Although the market relevance decreases until 
2040, which is mainly due to the increasing technology readiness of 
SSBs, NMC cells are still expected in the small segment. From 2030, 
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the solid-state battery is taken into account, which will become increas-
ingly important in the years 2030 to 2040 due to the assumed cost 
decrease (cf. Table  1), especially in the long-range version.

A general trend observed in the small vehicle segment shows that all 
cell chemistries are becoming less relevant over time. This decline could 
be attributed to overly optimistic model assumptions, as the regression 
curves predict a battery capacity of around 80 kWh and a range of 700 
km by 2040 for vehicles in that segment. The possibility that advances 
in battery technology do not materialize as predicted or take longer 
than expected may lead to a reduction in the market relevance of the 
respective cell chemistries.

Across all segments (cf. Appendix  C), LFP batteries show a high 
market relevance initially, but decline over time. However, LFP with 
CtP technology extends the battery technology’s lifespan and keeps it 
relevant for longer due do the possible higher ranges. NMC remains 
an essential cell chemistry in every segment, maintaining a consistent 
level of relevance compared to other technologies throughout the years. 
Solid-state batteries gain significance from 2030 onwards and increase 
in market relevance up to 2040, particularly for long-range vehicle 
versions.

While market relevance is a critical factor influencing the poten-
tial entry of new vehicle models, other ‘‘soft’’ considerations such 
as supplier relationships, standardized battery component sizes, and 
production facility configurations also play significant roles. One key 
benefit of utilizing our ML-based OEM agent is that the target param-
eters can be variably adjusted. In the following analysis, we adapt the 
agent’s configuration to predict the manufacturer group, rather than 
focusing solely on potential market entry years.
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Fig. 5. Market relevance of different example vehicle configurations for future battery technologies and model years in the small segment based on estimations of the OEM agent. 
The transparent bars illustrate the probability of models that are more likely to enter the market in an earlier year than in the year in which they are technically feasible.
The classification framework comprises four distinct categories, 
which were identified through a K-means cluster analysis at the outset. 
The categorization was based on two key criteria: the number of new 
vehicles per year, average vehicle prices. The identified categories are:

• Volume and low-cost manufacturers (e.g. Dacia, Peugeot, Citroen)
• Premium and niche manufacturers (e.g. Porsche, Polestar)
• Premium manufacturers with high volumes (e.g. Audi, BMW)
• Volume manufacturers with moderate prices (e.g. VW)
• Luxury manufacturers (e.g. Ferrari)
Fig.  6 indicates the estimated market relevance of the considered 

battery technologies with regard to the manufacturer clusters (a) pre-
mium and niche manufacturers and (b) volume and low-cost manu-
facturers. The height of each bar represents the average assignment 
probability of all bottom-up generated vehicles from 2035 and 2040 
for the respective OEM cluster.

It can be seen that vehicles with So-Ion and LFP cell chemistry are 
increasingly classified with volume and low-cost manufacturers. This 
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is plausible because these are the cheapest cell chemistries considered 
in the analysis. Vehicles with more expensive and higher performance 
cell chemistries such as NMC or SSBs are more likely to be allocated to 
premium and niche manufacturers. That is because these manufacturers 
are willing to pay higher prices for better performance, range and 
innovation in order to increase the competitiveness of their vehicles.

5. Discussion of methodology and results

The market relevance analysis reveals a notable alignment between 
current manufacturer strategies and the trends observed in vehicle 
concepts. A common approach among manufacturers is to focus on 
specific cell chemistries based on the vehicle segment, with LFP and 
So-Ion batteries suitable for smaller vehicles, while NMC being used in 
larger vehicles [28–31].

The analysis also highlights the growing importance of solid-state 
batteries across all segments, particularly for premium and long
-distance vehicles. These batteries promise higher energy densities and 
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Fig. 6. Market relevance of future battery technologies for different manufacturer clusters based on estimations of the OEM agent.
longer ranges, making them an attractive option for manufacturers 
looking to improve their offering to meet customers’ demands for 
longer vehicle ranges [18].

Furthermore, the model results suggest that vehicle prices will 
decrease due to cost reductions, partly driven by the use of cheaper bat-
tery cells like So-Ion or the adoption of cell-to-pack technology [32,33]. 
This trend is also reflected in the manufacturer’s strategies to further 
reduce costs, increase efficiency and at the same time maximize the 
vehicle range [34], which is consistent with the allocation probabilities 
determined in the analysis.

While the OEM agent model has shown promising results in aligning 
with current technology trends and manufacturer strategies, it is not 
without its limitations. One major limitation is the availability of data, 
which is currently limited to a relatively short period of time (includ-
ing BEV models from 2016 to 2024 only). This makes it challenging 
to provide reliable long-term predictions and assessments of market 
relevance. Furthermore, being at an early stage in the development 
of BEVs means that long-term forecasts are inherently uncertain and 
prone to being overtaken by technological leaps and innovations. The 
conservative assumption taken in the analysis assuming constant en-
ergy densities from 2030 onwards is a reflection of this uncertainty, 
but it also implies that possible game-changing advancements may not 
be accounted for in the assessment. Finally, the exponential saturation 
function used in the regression analysis to simulate physical limits 
may not accurately capture the potential impact of new innovations 
on market trends. This means that the OEM agent model’s predictions 
may be overly cautious and do not fully account for the possibilities of 
future breakthroughs and paradigm shifts in the industry.

While the OEM agent allows statements to be made about the po-
tential market entry of new vehicle models, several other ‘‘soft’’ factors 
are crucial in determining the actual development of these vehicles. 
In particular, supplier relationships, standardized sizes of battery com-
ponents, and configurations of production facilities all play important 
roles in this process. However, due to a lack of data availability, these 
factors have not yet been incorporated as input parameters by the OEM 
agent.
8 
This is where the main benefit of the developed machine learning 
based manufacturer agent comes into play: its flexibility and adaptabil-
ity. The model can be easily expanded or modified as needed, using 
newly available data, without requiring significant changes to the un-
derlying code. That flexibility is made possible by an external database 
management system that allows new technologies to be incorporated 
without requiring changes to the underlying code. Additionally, the 
object-oriented data structure enables a seamless integration of new 
components and technologies into the existing model, automatically 
taking them into account in the vehicle design. This makes it possible 
to quickly develop and deploy a tailored model for new problems or 
scenarios, using the same underlying framework.

6. Conclusion

A machine learning-based manufacturer agent model has been suc-
cessfully developed and applied to analyze and forecast market trends 
in the automotive sector. By integrating a comprehensive database of 
technological innovations, bottom-up calculated vehicles and historical 
data from passenger cars, the neural network was trained to evalu-
ate the potential of various possible future vehicle models, providing 
insights into emerging market opportunities and challenges.

The analysis reveals significant potential for battery chemistry di-
versification within the market of battery electric vehicles. Showing an 
increasing market potential for LFP and So-Ion vehicle models featuring 
cell-to-pack technology in the small vehicle segment. As future vehicles 
demand greater ranges, solid-state batteries are likely to enter the 
market alongside existing high-energy-density NMC cells, provided that 
technological readiness and cost reductions are achieved. In the near 
future, however, NMC cells are expected to remain the most important 
cell chemistry and may retain a competitive advantage over the other 
technologies due to their currently high usage.

To date, discussion and research on battery electric vehicles has 
primarily centered on increasing range and reducing costs. This paper is 
no exception, but it also lays the groundwork for future investigations 
that can expand the scope to other essential factors. With the aid 
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of the OEM agent model, it becomes possible to incorporate other 
critical factors into future discussions such as the CO2-footprint of the 
vehicle, provided that relevant data becomes available. This future 
expansion will enable an even deeper understanding of market trends 
and opportunities.
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Appendix A. Technology database

Table  A.2 shows the technical data of the three different electric 
motors considered: permanent magnet synchronous motor (PMSM); 
current excited synchronous motor (CESM); and induction or asyn-
chronous motor (ASM) as specified in [11].

Table  A.3 shows the technical data of the three different vehicle 
segments: small (e.g. Renault Zoe); medium (VW ID.3); and large 
(Mercedes EQS) as specified in [11].

Appendix B. ADAC dataset

The ADAC vehicle database [25] serves as the foundation for train-
ing the OEM agent, with our specific version incorporating data of 
over 42,000 vehicle models as of July 2024. The database contains all 
vehicle models that have been available in Germany since 2016 as well 
as their technical specifications, component details and information on 
vehicle costs. The original database can only be made available by 
licensing directly through the ADAC.

To ensure the quality of the data, irrelevant or incorrect data 
sets were removed. This was done using defined filter criteria, which 
ensured that only valid data relevant for the analysis was included. 
Fig.  B.7 shows the technical parameters of the filtered final selection of 
almost 500 battery electric vehicle models divided into the segments S, 
M and L.
Table A.2
Key performance indicators (KPIs) of considered electric motors [11].
 KPI Unit PMSM CESM ASM 
 Motor efficiency – 0.95 0.93 0.90 
 Component cost EUR 700 590 570  
Table A.3
Model assumption of the technical specifications of the S, M and L vehicle segments [11].
 Parameter Year Unit S-Segment M-Segment L-Segment 
 Vehicle massa kg 1251 1440 1798  
 Drag coefficient – 0.33 0.27 0.2  
 Frontal area m2 2.27 2.36 2.51  
 Battery volume l 270 340 420  
 

Rolling resistance coefficient

2020 – 0.0090 0.0090 0.0090  
 2025 – 0.0087 0.0087 0.0087  
 2030 – 0.0083 0.0083 0.0083  
 2035 – 0.0080 0.0080 0.0080  
 2040 – 0.0077 0.0077 0.0077  
 

Battery charging efficiency (AC)

2020 – 0.95 0.95 0.95  
 2025 – 0.96 0.96 0.96  
 2030 – 0.97 0.97 0.97  
 2035 – 0.98 0.98 0.98  
 2040 – 0.99 0.99 0.99  
 

Battery discharging efficiency (AC)

2020 – 0.95 0.95 0.95  
 2025 – 0.96 0.96 0.96  
 2030 – 0.97 0.97 0.97  
 2035 – 0.98 0.98 0.98  
 2040 – 0.99 0.99 0.99  
 

Efficiency of power electronics

2020 – 0.95 0.95 0.95  
 2025 – 0.96 0.96 0.96  
 2030 – 0.97 0.97 0.97  
 2035 – 0.98 0.98 0.98  
 2040 – 0.99 0.99 0.99  
 

Gearbox efficiency

2020 – 0.9800 0.9800 0.9800  
 2025 – 0.9825 0.9825 0.9825  
 2030 – 0.9850 0.9850 0.9850  
 2035 – 0.9875 0.9875 0.9875  
 2040 – 0.9900 0.9900 0.9900  
a Without battery.
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Fig. B.7. Key metrics of the filtered final selection of battery electric passenger car models available in Germany from 2016 to 2024 according to [25], segmented by vehicle size.
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Table C.4
Technical specifications and market relevance as estimated by the OEM agent (P%) of the example vehicle configurations in the small segment 
as displayed in Fig.  5.
 Segm. Year Battery Vehicle Capacity Consumption Range Price P%  
 chemistry version [kWh] [kWh/100 km] [km] [EUR]  
 

S

2020

LFP SRa 33 15.3 217 24.335 100 
 LFP LRb 41 15.6 261 26.248 100 
 NMC-811 SR 54 15.4 350 31.109 36  
 NMC-811 LR 66 15.7 421 34.579 1  
 

2025

LFP SR 36 14.5 247 23.419 88  
 LFP LR 44 14.8 298 25.122 90  
 LFP (CtP) SR 58 14.7 395 28.072 79  
 LFP (CtP) LR 72 15.1 475 30.844 81  
 NMC-811 SR 63 14.7 433 30.811 68  
 NMC-811 LR 78 15.0 520 34.214 68  
 So-Ion SR 22 14.2 152 23.126 87  
 So-Ion LR 26 14.4 184 24.761 88  
 So-Ion (CtP) SR 35 14.4 244 27.594 79  
 So-Ion (CtP) LR 43 14.6 295 30.257 79  
 

2030

LFP SR 38 13.7 280 22.063 49  
 LFP LR 47 14.0 338 23.453 64  
 LFP (CtP) SR 63 14.0 449 25.862 69  
 LFP (CtP) LR 77 14.3 540 28.126 84  
 NMC-811 SR 73 14.0 524 29.416 69  
 NMC-811 LR 90 14.3 630 32.498 84  
 So-Ion SR 27 13.5 200 19.544 35  
 So-Ion LR 33 13.7 242 20.355 46  
 So-Ion (CtP) SR 44 13.6 322 21.760 50  
 So-Ion (CtP) LR 54 13.9 389 23.081 66  
 SSB SR 77 13.8 556 37.173 46  
 SSB LR 94 14.2 669 42.038 63  
 

2035

LFP SR 38 13.0 296 21.962 3  
 LFP LR 47 13.2 357 23.329 6  
 LFP (CtP) SR 63 13.2 475 25.698 15  
 LFP (CtP) LR 77 13.5 571 27.924 29  
 NMC-811 SR 73 13.2 554 28.842 25  
 NMC-811 LR 90 13.5 666 31.791 47  
 So-Ion SR 27 12.8 211 19.403 2  
 So-Ion LR 33 12.9 256 20.182 2  
 So-Ion (CtP) SR 44 12.9 340 21.531 5  
 So-Ion (CtP) LR 54 13.1 411 22.798 9  
 SSB SR 77 13.1 587 35.360 27  
 SSB LR 94 13.4 708 39.808 51  
 

2040

LFP SR 38 12.3 314 21.861 0  
 LFP LR 47 12.5 379 23.205 0  
 LFP (CtP) SR 63 12.5 503 25.534 0  
 LFP (CtP) LR 77 12.7 606 27.722 0  
 NMC-811 SR 73 12.5 587 28.268 0  
 NMC-811 LR 90 12.7 707 31.085 23  
 SSB SR 77 12.4 622 33.748 0  
 SSB LR 94 12.6 751 37.826 70  
a Standard range.
b Long range.
Appendix C. Model outputs

The values presented in the tables and figures below show the 
technical specifications and estimated market relevance of different 
example vehicle configurations in the small, medium and large segment 
for future battery technologies and model years classified by the OEM 
agent. The tables and figures below represent the average of all bottom-
up configured vehicles grouped by specific criteria, including year, 
battery chemistry, vehicle version (standard range or long range), and 
number of electric motors.

To maintain a manageable number of data points, the analysis 
includes: single-motor vehicles in the small segment; standard-range 
vehicles with one motor and long-range vehicles with two motors in 
the medium segment; and all large vehicles with two electric motors. 
This selection is based on an analysis of average electric motor count by 
segment, which found that the small segment predominantly features 
single-motor vehicles, the large segment two-motor vehicles, and the 
medium segment exhibits a trend towards two-motor vehicles, although 
11 
the current average across all medium vehicle models considered is at 
around 1.4 electric motors.

Fig.  5 provides the underlying vehicle data for the configurations 
shown in Fig.  5, which estimates the future market relevance of se-
lected small-segment BEV configurations across battery technologies 
and model years, as classified by the OEM agent. The table includes 
average values for battery capacity, energy consumption, range, and 
vehicle price for each configuration. These configurations are defined 
by year, battery chemistry, version (short or long range), and number of 
electric motors. To keep the analysis manageable and based on current 
market trends, only single-motor vehicles are considered, reflecting the 
typical motor count in this segment.

C.1. Model results of the medium vehicle segment

Fig.  C.8 presents the estimated market relevance of selected example 
configurations for medium-segment BEVs, differentiated by battery 
technology, model year and range option, as classified by the OEM 
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Table C.5
Technical specifications and market relevance as est. by the OEM agent (P%) of the example vehicle configurations in the medium segment as 
displayed in Fig.  C.8.
 Segm. Year Battery Vehicle Capacity Consumption Range Price P%  
 chemistry version [kWh] [kWh/100 km] [km] [EUR]  
 

M

2020

LFP SRa 42 15.4 270 38.446 100 
 LFP LRb 51 16.5 311 42.043 100 
 NMC-811 SR 68 15.6 435 46.976 78  
 NMC-811 LR 83 16.6 501 52.534 35  
 

2025

LFP SR 45 14.6 309 37.293 45  
 LFP LR 55 15.5 357 40.624 49  
 LFP (CtP) SR 73 14.9 492 43.151 22  
 LFP (CtP) LR 90 15.9 567 47.830 22  
 NMC-811 SR 80 14.8 539 46.602 17  
 NMC-811 LR 98 15.8 621 52.074 16  
 So-Ion SR 27 14.2 191 36.924 62  
 So-Ion LR 33 15.0 222 40.170 67  
 So-Ion (CtP) SR 44 14.4 306 42.550 46  
 So-Ion (CtP) LR 54 15.3 354 47.091 50  
 

2030

LFP SR 48 13.8 352 35.584 15  
 LFP LR 60 14.6 408 38.523 17  
 LFP (CtP) SR 79 14.0 562 40.369 20  
 LFP (CtP) LR 97 15.0 648 44.407 24  
 NMC-811 SR 92 14.0 656 44.845 21  
 NMC-811 LR 113 15.0 756 49.913 26  
 So-Ion SR 34 13.4 253 32.413 14  
 So-Ion LR 42 14.2 294 34.622 15  
 So-Ion (CtP) SR 55 13.6 405 35.204 16  
 So-Ion (CtP) LR 68 14.4 470 38.055 19  
 SSB SR 97 13.9 697 54.612 20  
 SSB LR 119 14.8 805 61.927 25  
 

2035

LFP SR 48 12.9 375 35.458 5  
 LFP LR 60 13.7 434 38.367 5  
 LFP (CtP) SR 79 13.2 598 40.162 19  
 LFP (CtP) LR 97 14.0 691 44.153 26  
 NMC-811 SR 92 13.2 698 44.122 31  
 NMC-811 LR 113 14.0 806 49.023 44  
 So-Ion SR 34 12.6 269 32.236 3  
 So-Ion LR 42 13.3 313 34.404 3  
 So-Ion (CtP) SR 55 12.8 431 34.915 7  
 So-Ion (CtP) LR 68 13.6 500 37.699 9  
 SSB SR 97 13.1 742 52.329 34  
 SSB LR 119 13.9 858 59.118 47  
 

2040

LFP SR 48 12.1 400 35.331 0  
 LFP LR 60 12.8 464 38.211 0  
 LFP (CtP) SR 79 12.4 639 39.955 31  
 LFP (CtP) LR 97 13.1 740 43.899 58  
 NMC-811 SR 92 12.4 745 43.399 92  
 NMC-811 LR 113 13.1 863 48.134 99  
 SSB SR 97 12.2 791 50.299 99  
 SSB LR 119 13.0 918 56.622 100 
a Standard range.
b Long range.
agent. The corresponding vehicle data such as average battery capacity, 
energy consumption, range, and price can be found in Table  C.5.

In the medium segment, LFP batteries show high initial market 
relevance but decline over time. However, the introduction of LFP 
with Cell-to-Pack technology extends their competitiveness by enabling 
higher ranges, thus maintaining their relevance longer. NMC remains 
a core cell chemistry, showing stable market relevance throughout 
the years. Solid-state batteries begin to gain significance from 2030 
onward, with growing relevance through 2040—particularly in long-
range vehicle configurations.

C.2. Model results of the large vehicle segment

Fig.  C.9 illustrates the estimated market relevance of selected ex-
ample configurations for large-segment BEVs, differentiated by battery 
technology, model year, and range option, as classified by the OEM 
agent. All configurations in this segment assume all-wheel drive by two 
12 
electric motors, in line with typical drivetrain setups for this vehicle 
class. The underlying vehicle data such as average battery capacity, 
energy consumption, range, and price are provided in Table  C.6.

In the large segment, LFP batteries show relatively high market 
relevance in the current market and near future. However, their im-
portance declines over time as vehicle range requirements increase and 
alternative technologies become more competitive. NMC continues to 
play a central role, maintaining strong and steady market relevance 
across all years. Solid-state batteries begin to gain traction once they 
reach technological maturity and become cost-competitive, contribut-
ing significantly to market relevance from 2030 onward especially in 
long-range configurations.

Data availability

Data will be made available on request.



S. Hasselwander et al.

Fig. C.8. Market relevance of various example vehicle configurations with future battery technologies for different model years in the medium segment based on estimations of 
the OEM agent. The transparent bars illustrate the probability of models that are more likely to enter the market in an earlier year than in the year in which they are technically 
feasible.
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Table C.6
Technical specifications and market relevance as estimated by the OEM agent (P%) of the example vehicle configurations in the large segment 
as displayed in Fig.  C.9.
 Segm. Year Battery Vehicle Capacity Consumption Range Price P%  
 chemistry version [kWh] [kWh/100 km] [km] [EUR]  
 

L

2020

LFP SRa 51 16.9 304 65.406 100 
 LFP LRb 63 17.5 362 68.382 100 
 NMC-811 SR 84 17.1 489 75.943 100 
 NMC-811 LR 103 17.7 583 81.342 80  
 

2025

LFP SR 56 15.9 350 63.982 92  
 LFP LR 68 16.4 418 66.630 95  
 LFP (CtP) SR 90 16.3 557 71.219 87  
 LFP (CtP) LR 111 16.8 662 75.531 92  
 NMC-811 SR 99 16.2 610 75.481 74  
 NMC-811 LR 121 16.7 726 80.773 81  
 So-Ion SR 33 15.4 218 63.526 88  
 So-Ion LR 41 15.8 262 66.069 90  
 So-Ion (CtP) SR 54 15.7 348 70.476 80  
 So-Ion (CtP) LR 67 16.1 416 74.617 83  
 

2030

LFP SR 60 14.8 403 61.871 39  
 LFP LR 74 15.3 482 64.034 67  
 LFP (CtP) SR 97 15.2 641 67.781 77  
 LFP (CtP) LR 120 15.7 763 71.303 94  
 NMC-811 SR 114 15.2 748 73.310 78  
 NMC-811 LR 140 15.7 890 78.104 95  
 So-Ion SR 42 14.4 291 57.954 18  
 So-Ion LR 51 14.7 349 59.215 34  
 So-Ion (CtP) SR 68 14.7 464 61.401 42  
 So-Ion (CtP) LR 84 14.6 577 62.268 50  
 SSB SR 120 15.0 796 85.376 47  
 SSB LR 147 15.5 950 92.945 77  
 

2035

LFP SR 60 13.8 433 61.715 2  
 LFP LR 74 14.2 518 63.841 4  
 LFP (CtP) SR 97 14.2 689 67.526 18  
 LFP (CtP) LR 120 14.6 820 70.989 43  
 NMC-811 SR 114 14.2 803 72.417 36  
 NMC-811 LR 140 14.6 956 77.005 70  
 So-Ion SR 42 13.4 312 57.734 1  
 So-Ion LR 51 13.7 375 58.945 1  
 So-Ion (CtP) SR 68 13.7 498 61.044 4  
 So-Ion (CtP) LR 84 14.0 597 63.016 9  
 SSB SR 120 14.0 855 82.556 41  
 SSB LR 147 14.4 1020 89.475 76  
 

2040

LFP SR 60 12.8 467 61.558 0  
 LFP LR 74 13.2 559 63.648 0  
 LFP (CtP) SR 97 13.1 743 67.271 0  
 LFP (CtP) LR 120 13.5 886 70.675 48  
 NMC-811 SR 114 13.1 867 71.524 66  
 NMC-811 LR 140 13.5 1033 75.907 100 
 SSB SR 120 13.0 922 80.048 96  
 SSB LR 147 13.4 1102 86.392 100 
a Standard range.
b Long range.
14 
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Fig. C.9. Market relevance of various example vehicle configurations with future battery technologies for different model years in the large segment based on estimations of the 
OEM agent. The transparent bars illustrate the probability of models that are more likely to enter the market in an earlier year than in the year in which they are technically 
feasible.
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