Shin, Hyungmin und Schröder, Andreas (2025) Robust Flow Field Reconstruction Using PINN for 3D Lagrangian Particle Tracking. In: 16th International Symposium on Particle Image Velocimetry – ISPIV 2025 (1142), 1 - 12. 16th International Symposium on Particle Image Velocimetry – ISPIV 2025, 2025-06-26 - 2025-06-28, Tokio, Japan.
![]() |
PDF
2MB |
Offizielle URL: https://www.ispiv2025.org/index.html
Kurzfassung
Physics-Informed Neural Networks (PINNs) effectively reconstruct fluid flow fields from sparse Lagrangian Particle Tracking (LPT) data by embedding physical laws directly into neural network training. This study investigates the influence of experimental parameters such as particle density on PINN reconstruction performance using synthetic (DNS-based HIT and turbulent channel flows) and experimental turbulent boundary layer (TBL) datasets. Results demonstrate PINNs’ robustness across varying seeding densities, with notably superior performance in TBL cases compared to HIT cases. Optimization techniques, particularly the SOAP optimizer, significantly enhance convergence speed and accuracy, highlighting PINNs' potential for reliable fluid flow reconstruction from limited experimental data.
elib-URL des Eintrags: | https://elib.dlr.de/215584/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Zusätzliche Informationen: | ISPIV2025-1142 | ||||||||||||
Titel: | Robust Flow Field Reconstruction Using PINN for 3D Lagrangian Particle Tracking | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Juni 2025 | ||||||||||||
Erschienen in: | 16th International Symposium on Particle Image Velocimetry – ISPIV 2025 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Seitenbereich: | 1 - 12 | ||||||||||||
Name der Reihe: | Conference Proceedings | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Physics-Informed Neural Networks (PINNs), Lagrangian Particle Tracking (LPT), SOAP optimizer, fluid flow reconstruction | ||||||||||||
Veranstaltungstitel: | 16th International Symposium on Particle Image Velocimetry – ISPIV 2025 | ||||||||||||
Veranstaltungsort: | Tokio, Japan | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 26 Juni 2025 | ||||||||||||
Veranstaltungsende: | 28 Juni 2025 | ||||||||||||
Veranstalter : | Meiji University, Japan | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Flugzeug und Validierung | ||||||||||||
Standort: | Göttingen | ||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > Experimentelle Verfahren, GO | ||||||||||||
Hinterlegt von: | Micknaus, Ilka | ||||||||||||
Hinterlegt am: | 31 Jul 2025 17:00 | ||||||||||||
Letzte Änderung: | 31 Jul 2025 17:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags