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Abstract 

Physics-Informed Neural Networks (PINNs) effectively reconstruct fluid flow fields from sparse 

Lagrangian Particle Tracking (LPT) data by embedding physical laws directly into neural network train-

ing. This study investigates the influence of experimental parameters—such as particle density—on 

PINN reconstruction performance using synthetic (DNS-based HIT and turbulent channel flows) and 

experimental turbulent boundary layer (TBL) datasets. Results demonstrate PINNs’ robustness across 

varying seeding densities, with notably superior performance in TBL cases compared to HIT cases. 

Optimization techniques, particularly the SOAP optimizer, significantly enhance convergence speed and 

accuracy, highlighting PINNs' potential for reliable fluid flow reconstruction from limited experimental 

data. 

1 Introduction 

Lagrangian Particle Tracking (LPT) is a well-established experimental technique used to analyze 

the trajectories of individual particles, allowing for a detailed quantitative visualization of fluid flow 

behavior. Unlike other volumetric measurement techniques, such as Tomographic Particle Image Veloc-

imetry (Tomo-PIV), which average data over spatial grids, LPT tracks individual particles as they move 

through the flow field. This approach provides direct measurements of trajectories, velocities and accel-

erations with high spatial resolution (Schröder and Schanz 2023). A significant advancement in LPT is 

the development of the Shake-The-Box (STB) algorithm (Schanz et al. 2016), which enables time-re-

solved 3D LPT for densely seeded flows, making it possible to analyze complex fluid dynamics, such 

as turbulence, in greater detail. However, several challenges remain, particularly in calculating spatial 

gradients and reconstructing pressure fields—both of which are critical areas of research in fluid dy-

namics (Sciacchitano et al. 2025). 

Reconstructing the full flow field onto a structured grid, including partial velocity gradients and the 

pressure field from LPT data, is commonly referred to as Cartesian Grid Reduction (CGR). This recon-

struction can be achieved using various data assimilation (DA) techniques. A straightforward approach 

is the ensemble-averaging method, which averages velocity vectors from LPT data within small spatial 

bins (Agüera et al. 2016; Kasagi and Nishino 1991). Although this method is simple and easy to imple-

ment, it does not inherently enforce physical constraints. To incorporate physical laws into the CGR 

process, for example the DA method FlowFit introduces the continuity and momentum equations along 

with particle acceleration data to determine the optimal coefficients of a 3D B-spline basis that repre-

sents the flow field (Godbersen et al. 2024). This method has been further improved by incorporating 

divergence-freeness as a hard constraint, restricting the optimizer to search within a divergence-free 

subspace of the velocity field. Similarly, Vortex-In-Cell (VIC) algorithms (Schneiders et al. 2014; 

Schneiders and Scarano 2016; Jeon et al. 2022)—such as VIC+ and VIC#—enforce the vorticity dy-

namic equation in conjunction with measured velocity and acceleration data. 

With the advent of Physics-Informed Neural Networks (PINNs) in the scientific community (Raissi 

et al. 2019), multiple successful applications of PINNs to LPT data have been reported. Wang et al. 

demonstrated PINN-based reconstruction of simulated LPT data from direct numerical simulation 



 

(DNS) of channel flow (H. Wang et al. 2022). Clark di Leoni et al compared PINN reconstruction per-

formance with the conventional DA method, Constrained Cost Minimization (CCM), in reconstructing 

synthetic DNS channel flow and experimental turbulent shear flow (Clark Di Leoni et al. 2023). Cai et 

al. showed that PINNs can achieve super-resolution velocity field reconstruction in both space and time 

from sparse measurements in tomographic PTV experiments of jet flow in water (Cai et al. 2024). Diego 

Toscano et al. introduced a new method, AIVT, based on the Kolmogorov-Arnold network, for temper-

ature inference in Rayleigh-Bénard Convection (RBC) cells (Toscano et al. 2024). Steinfurth et al. com-

pared the PINN approach to the binning method and Vortex-In-Cell with Time-Space Assimilation (VIC-

TSA) under different data sparsity conditions in pulsed jets (Steinfurth et al. 2024). 

PINNs have proven to be highly effective in the DA field for both numerical and experimental da-

tasets. However, deeper insight into the relationship between LPT experimental parameters and PINN 

reconstruction performance—particularly in preserving fluid flow gradients—remains an open research 

question. In this study, we evaluate the influence of key LPT parameters, such as particle concentration 

rate in the volume and camera repetition rate, on the reconstruction performance of PINNs for both 

numerical and experimental test cases.  
We present several PINN methodologies that have proven to be among the most effective for recon-

structing flow structures from sparse particle clouds. Section 2 provides a fundamental overview of 

PINNs, while Section 3 describes the test cases used to evaluate PINN-based DA, ranging from synthetic 

LPT-simulated datasets to actual experimental datasets obtained via the STB method. In Section 4, we 

present the results of PINN-based flow field reconstructions across various turbulent fluid flow scenar-

ios. 

2 Physics informed neural network 

A Physics-Informed Neural Network is a deep neural network-based global function approximator 

that embeds governing physical laws by leveraging automatic differentiation of the output components 

with respect to the input values. The general architecture of a PINN consists of a neural network with 

trainable parameters θ, which receives input coordinates and returns the predicted outputs. The loss 

function comprises terms based on the governing equations and measured data, as illustrated in Figure 

1. 

Given velocity data at specific particle locations extracted from fitted LPT trajectories, the PINN 

interpolates the velocity field by minimizing the discrepancy between predicted and experimental ve-

locities. The data loss term is defined as: 
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where 𝑢𝑖, 𝑢̂𝑖, and 𝑁𝑑 denote the measured velocity, predicted velocity, and number of input vectors, 

respectively. While fitting the velocity field, the PINN also enforces physical constraints through the 

governing equations for incompressible flow: the continuity equation and the incompressible Navier-

Stokes equation. These constraints are included via the following loss terms: 

𝐿𝑖 =
1

𝑁𝑝
∑|∇ ∙ 𝑢𝑗|

2

𝑁𝑝

𝑗=1

(2) 

𝐿𝑚 =
1

𝑁𝑝
∑ |

∂𝑢𝑗

∂t
+ 𝑢𝑗 ∙ ∇𝑢𝑗 +

∇p

ρ
− ν∇2𝑢𝑗|

2
𝑁𝑝

𝑗=1

(3) 

Here t, p, ρ, ν, and 𝑁𝑝 represent time, pressure, fluid density, kinematic viscosity, and the number of 

residual points, respectively. Since the magnitude of each loss term can vary depending on the flow 

characteristics, balancing them is essential to ensure stable convergence. The total loss function is de-

fined as: 

L = 𝜆𝑑𝐿𝑑 + 𝜆𝑖𝐿𝑖 + 𝜆𝑚𝐿𝑚 (4) 

where 𝜆𝑑, 𝜆𝑖, and 𝜆𝑚 are weighting factors that control the influence of each term.  



 

 

 
Figure  1. Schematic of the Physics-Informed Neural Network (PINN). The inputs consist of time t and 

spatial coordinates x, and the outputs are velocity u and pressure p. The neural network is trained using 

the continuity equation and the incompressible Navier–Stokes equations as physical constraints, in com-

bination with the provided LPT dataset. 

 

2.1 Neural architecture 

PINNs can adopt various neural network architectures depending on desired expressivity, computa-

tional efficiency, and implementation complexity. In this study, we use a Multi-Layer Perceptron (MLP), 

which is widely adopted and has shown robust performance in related literature. 

Given a network of depth D, each hidden layer 𝑁𝑘 is defined as: 

𝑁𝑘(𝑧𝑘−1) = 𝑊𝑘𝑧𝑘−1 + 𝑏𝑘 (5) 

where 𝑊𝑘 and 𝑏𝑘 are weights and biases of the 𝑘𝑡ℎ layer. The network's output is computed by a com-

position of layers and activation functions: 

𝑢̂(𝑧; 𝜃) = (𝑁𝑘 ◦ σ ◦ 𝑁𝑘−1 ◦ ⋯ σ ◦ 𝑁1)(𝑧) (6) 

where ◦is the composition operator, θ = {𝑊𝑘, 𝑏𝑘}𝑘=1
𝐷  represents all trainable parameters. For the cur-

rent study, we use an MLP with 15 hidden layers, each with 300 neurons, and tanh as the activation 

function. We initialize weights using Glorot uniform initialization and biases with zeros. 

Training deep networks can be challenging due to the high-dimensional parameter space, which may 

lead to instability or divergence. To promote stable convergence, we adopt several well-established tech-

niques. One of the most widely used method is input normalization which rescale each coordinate of 

input between (-1,1), 

𝑥𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = 2
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
− 1 (7) 

where 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥  are minimum and maximum values of x in the domain respectively. Another 

method implemented in the current network is weight normalization where a weight parameter of the 

neural network is expressed as  

W =
𝑔

‖𝑣‖
𝑣 (8) 

where 𝑣 is a k-dimensional vector, 𝑔 is a scalar, and ‖𝑣‖ denotes the Euclidean norm of 𝑣. Finally, to 

mitigate the neural network’s tendency to prioritize learning low-frequency features from the training 

data (Cao et al.; S. Wang, Yu, et al. 2020)—an effect known as spectral bias, which results in overly 

smoothed fluid flow structures—we replace the first hidden layer with a Fourier Feature layer: 

𝑧1 = (𝜎 ◦ 𝑁1)(𝑧0) = [sin(2𝜋𝑤1 ∙ 𝑧0) , cos(2𝜋𝑤1 ∙ 𝑧0) , ⋯ , sin(2𝜋𝑤𝑤 ∙ 𝑧0) , cos(2𝜋𝑤𝑤 ∙ 𝑧0)]𝑇 (9) 



 

where 𝑤𝑖 are randomly chosen frequencies fixed before training (Tancik et al.; S. Wang, Wang, et al. 

2020). 

 

2.2 Optimization 

The optimization of PINNs involves simultaneously fitting observed data and satisfying physical 

laws, making the problem inherently stiff and sensitive to hyperparameters. As network depth and da-

taset size increase, the risk of unstable convergence or divergence becomes more pronounced. To ensure 

stability in training, especially for large-scale LPT datasets, several techniques are incorporated. 

Residual points, where the governing physical constraints are evaluated, play a role similar to mesh 

points in traditional numerical methods. Their placement critically influences how well the model satis-

fies physical laws. While uniform sampling is commonly used, we adopt a Residual-based Adaptive 

Distribution (RAD) method (Basir and Senocak, 2023), which dynamically resamples residual points 

according to a probability density function proportional to the PDE residual. The PDF is defined as: 

p(x) ∝
𝜀𝑘(𝑥)

𝔼[𝜀𝑘(𝑥)]
+ c (10) 

where ε(x) is the PDE residual, k and c are hyperparameters (set to 1 in this study), and 𝔼[𝜀𝑘(𝑥)] is 

approximated using numerical integration with 10,000 integration steps. This method biases sampling 

toward regions where the physical constraints are most violated, improving physical consistency in the 

learned solution. 

Another key challenge is balancing the multiple loss terms. If the data loss dominates, the network 

may overfit the observed particle data and fail to enforce physical constraints. Conversely, if the physics 

loss dominates, the solution may become overly smoothed or diverge from measurements. To improve 

convergence and overcome optimization challenges from competing loss directions, we employ the 

shampoo with adam in the preconditioner’s eigenbasis (SOAP) optimizer (Vyas et al.; S. Wang, Bhartari, 

et al. 2024). This optimizer combines the adaptive nature of Adam with second-order curvature infor-

mation from the local loss landscape. For a layer with weight matrix 𝑊𝑡 ∈ ℝ𝑚×𝑛 and gradient 𝐺𝑡 ∈
ℝ𝑚×𝑛, the optimizer computes: 

𝐿𝑡 = 𝛽2𝐿𝑡−1 + (1 − 𝛽2)𝐺𝑡𝐺𝑡
𝑇 ,            𝑅𝑡 = 𝛽2𝑅𝑡−1 + (1 − 𝛽2)𝐺𝑡

𝑇𝐺𝑡 (11) 

where 𝛽2 is exponential moving average coefficient. These matrices are decomposed as: 

𝐿𝑡 = 𝑄𝐿Λ𝐿𝑄𝐿
𝑇 , 𝑅𝑡 = 𝑄𝑅Λ𝑅𝑄𝑅

𝑇 (12) 

The gradient is projected into the eigenspace: 

𝐺̃𝑡 = 𝑄𝐿
𝑇𝐺𝑡𝑄𝑅 (13) 

Adam updates are then performed in this rotated space: 

𝑊̃𝑡+1 = 𝑊̃𝑡 − 𝜂 ∙ 𝐴𝑑𝑎𝑚(𝐺̃𝑡) (14) 

𝑊𝑡+1 = 𝑄𝐿𝑊̃𝑡+1𝑄𝑅
𝑇 (15) 

This method exploits curvature-aware updates to navigate the high-dimensional loss landscape more 

effectively than traditional first-order optimizers. Figure 2 demonstrates that the SOAP optimizer con-

sistently improves convergence speed across all loss terms compared to the standard Adam optimizer. 

 



 

 
Figure  2. Comparison of convergence behavior of data and physics loss between ordinary Adam opti-

mizer and SOAP optimizer in training the PINN. 

3 Data description 

We prepared three different cases: the first two use data from direct numerical simulations (DNS)—

of a forced homogeneous isotropic turbulence (HIT) flow at Taylor microscale Re = 433 and a turbu-

lent channel flow at 𝑅𝑒𝜏 = 1000. The third case uses experimental measurements of turbulent boundary 

layer flow as well at 𝑅𝑒𝜏 = 995 near the wall.  

 

3.1 Synthetic particle tracks in DNS of homogeneous isotropic turbulent flow 

The first synthetic dataset is based on DNS of homogeneous isotropic turbulence at Re = 433, avail-

able from the Johns Hopkins Turbulence Database (JHTDB). From the full simulation domain of size 

2π×2π×2π (with 10243 voxels), a central sub-volume of 1283 voxels were extracted. A total of 201 

timesteps were stored, with a time interval of 0.002. Assuming air at 20°C as the working fluid, the 

integral length, time, and velocity scales are 𝑙0 = 127.32 mm, 𝑡0 = 0.2 𝑠, and 𝑢0 = 636.81 𝑚𝑚/𝑠, re-

spectively. 

 

3.2 Synthetic particle tracks in DNS of turbulent channel flow 

Similarly, synthetic particles were tracked in DNS of turbulent channel flow at a friction Reynolds 

number of 𝑅𝑒𝜏 = 1000, also available from JHTDB. Using the viscous length scale 𝛿𝜈 = ν/𝑢𝜏 (where ν 

is kinematic viscosity and 𝑢𝜏  is friction velocity), we extracted a subdomain of size 

1546𝛿𝜈 ×331𝛿𝜈 ×117𝛿𝜈 in the streamwise, wall-normal, and spanwise directions, respectively, over 51 

viscous time units. The working fluid was assumed to be air with a kinematic viscosity of 15 mm²/s and 

a free-stream velocity 𝑢∞ = 8.3𝑚/𝑠. The corresponding viscous length and time scales were 0.036 mm 

and 0.09 ms, respectively. A pressure gradient of dp/dx = -0.0025, used in the DNS, was also considered 

during error evaluation. 

 

3.3 Experimental particle tracks of turbulent boundary layer (TBL) 

An experimental dataset was prepared under conditions similar to the synthetic DNS of turbulent 

channel flow. Measurements were conducted in the one-meter wind tunnel at DLR Göttingen (Schröder 

et al. 2024). The test section was 3000 mm long with a cross-section of 740 mm × 1000 mm. Air entered 

the test section at a free-stream velocity of 𝑢∞ = 10𝑚/𝑠 and passed a trip device that initiated the de-

velopment of a turbulent boundary layer along the lower wall. Measurements were taken through a 

window located 2.08 m downstream of the trip. The boundary layer had a friction Reynolds number of 

𝑅𝑒𝜏 = 995, corresponding to a viscous length scale 𝑙𝜈 = 0.037𝑚𝑚 and a viscous time scale 𝜏𝜈 =
0.0925ms. 

Di-Ethyl-Hexyl-Sebacat (DEHS) particles with a mean diameter of approximately 1.5 μm were gen-

erated using a Laskin-nozzle seeder and homogeneously distributed in the tunnel. A dual-head nanosec-

ond laser (Photonics Industries DM200) illuminated the particles from the downstream direction as Fig-

ure 3 (a). Images were captured through a bottom window using five high-speed cameras (four Phantom 

v2640, one v1840) with Scheimpflug adapters as depicted in Figure 1 (b), operating at 23.9 kHz and a 



 

spatial resolution of 34.185 px/mm. The measurement volume was 60 × 2 ×15 mm³ in the streamwise, 

wall-normal, and spanwise directions, respectively. 

Camera calibration was performed using a LaVision Type 11 3D calibration plate, followed by vol-

ume self-calibration and optical transfer function refinement. Particle image densities ranged from 0.06 

to 0.07 ppp. The Shake-The-Box algorithm tracked 50,000–60,000 particles over up to 140,000 consec-

utive images. 

 

3.4 LPT dataset 

For the synthetic datasets, particles were treated as Lagrangian tracers. Synthetic tracks were gener-

ated by simulating particle trajectories within a predefined inspection volume. Neutral buoyant particles 

were uniformly seeded throughout an extended domain and advected using a fourth-order Runge–Kutta 

scheme. To minimize boundary effects and ensure statistical convergence, the simulation domain was 

enlarged by approximately 15% beyond the interrogation volume in each spatial direction. However, 

only particles within the interrogation volume were retained for the final datasets. A total of 51 consec-

utive frames were prepared for data assimilation, containing between 50,000 and 280,000 particles per 

frame, depending on the case. 

Similarly, for the experimental case, 51 consecutive time steps of measured particle trajectories were 

collected, with an average of 54,000 particles per frame. In the absence of ground truth, particles were 

divided into training and validation sets: 80% of the particle tracks were used to reconstruct the flow 

field, while the remaining 20% were withheld and used for error estimation. 

The extracted particle trajectories were further processed using the B-spline-based curve fitting 

method TrackFit, which reduces noise by incorporating Wiener type optimal filtering (Gesemann et al. 

2016). By regenerating the particle trajectories, first- and second-order derivatives can be computed at 

any time point within the observed time interval. The computed first derivatives of the trajectories, along 

with the corresponding spatiotemporal particle positions, are used as input for the PINN reconstruction. 

To investigate the effect of particle sparsity, the training particles were downsampled by a factor of 

𝑘𝑛 = 2𝑛, for n=1,2, 3. This corresponds to mean inter-particle spacings ranging from 6𝑙𝜈 to 24𝑙𝜈 for the 

synthetic cases, and from 9.4𝑙𝜈 to 18.7𝑙𝜈 for the experimental case. 

 

 
(a) (b) 

Figure  3. Experimental setup in the 1-meter wind tunnel at DLR Göttingen. (a) Illumination of the 

measurement volume near the wall using two Photonics Industries DM200 lasers, with indications of 

the flow direction and imaged region. (b) Five high-speed cameras—four Phantom v2640 and one Phan-

tom v1840—record particle light scattering within the measurement volume through an optical window. 

4 Results 

4.1 PINN reconstruction result at 24th timestep 

Figure 4 shows the velocity and pressure reconstruction results from the PINN applied to the HIT 

case, comparing a densely seeded scenario (𝑙𝜈=6) with a more sparsely seeded one (𝑙𝜈=15.1). The cor-

responding error plots, compared against DNS ground truth, are also presented. In the densely seeded 



 

case, all velocity components are accurately reconstructed, and the velocity gradients are well preserved, 

as evidenced by the high-quality pressure field. In the sparsely seeded case, although the PINN success-

fully captures the overall flow structure, the reduced number of particles in key regions results in a 

smoother velocity field. This smoothing causes some loss of velocity gradient information, leading to a 

slightly less accurate pressure reconstruction. Figure 5 illustrates the coherent structures of the HIT flow 

using a Q-criterion threshold of 3,500s-1. For inter-particle spacings up to 9.5𝑙𝜈most fine-scale coherent 

structures are well preserved. However, as the spacing increases, the PINN begins to miss finer struc-

tures, and under the sparsest conditions, even some of the larger flow structures are no longer accurately 

reconstructed. 

Figure 6 shows the reconstruction results from the PINN applied to the synthetic turbulent boundary 

layer case at two different particle seeding densities. In contrast to the HIT case, the PINN effectively 

reconstructs the velocity field and preserves velocity gradients even under relatively sparse seeding, 

despite having similar inter-particle spacing in terms of viscous length scale. This result is further sup-

ported by Figure 7, which visualizes the coherent structures of the synthetic TBL flow at a Q-criterion 

of 2.5×106 s-1. Unlike in the HIT case, the PINN maintains the velocity gradients with greater con-

sistency across different particle densities. Although some fine-scale features are missing at the lowest 

density, the main coherent structures remain largely intact, indicating robustness to sparsity in the train-

ing data. 

Figure 8 presents slice plots of each velocity component and the pressure field from the experimental 

TBL case. Due to the absence of ground truth DNS data, only directional slice plots are shown. Never-

theless, the reconstructed velocity and pressure fields appear consistent across different inter-particle 

spacings. Notably, the pressure field shows no evidence of filtering or degradation, even at lower particle 

concentrations. The robustness of the experimental TBL reconstruction is further demonstrated in Figure 

9, which shows iso-surfaces of coherent structures based on a Q-criterion of 1.25×106. Even at the lowest 

particle density, fine-scale structures remain well preserved. 

 

 
Figure  4. PINN reconstruction of velocity and pressure fields for the synthetic HIT case at different 

inter-particle spacings (6𝒍𝝂 and 15.1𝒍𝝂), along with corresponding error plots at the 24th timestep. 

 



 

 
Figure  5. Visualized coherent structures using isosurface of the Q-criterion field (Q = 3500 s-2) in 

synthetic HIT flow reconstructed by PINN across different inter-particle spacing at the 24th timestep. 

 

 
Figure  6. PINN reconstruction of velocity and pressure fields for the synthetic TBL case at different 

inter-particle spacings (6𝒍𝝂 and 15.1𝒍𝝂), along with corresponding error plots at the 24th timestep. 

 



 

 
Figure  7. Visualized coherent structures using isosurface of the Q-criterion field (Q = 2.5 × 106 s-2) in 

synthetic TBL flow reconstructed by PINN across different inter-particle spacing at the 24th timestep. 

 

 
Figure  8. PINN reconstruction of velocity and pressure fields for the experimental TBL case at different 

inter-particle spacings (7𝒍𝝂, 11𝒍𝝂, and 14𝒍𝝂), along with corresponding error plots at the 24th timestep. 



 

 

 
Figure  9. Visualized coherent structures using isosurface of the Q-criterion field (Q = 1.25×106 s-2) in 

experimental TBL flow reconstructed by PINN across different inter-particle spacing at the 24th 

timestep. 

4.2 Error evaluation 

Figure 10 shows the normalized root mean square error (NRMSE) across all test cases as a function 

of seeding density. For the synthetic HIT and TBL cases, where ground truth velocity and pressure fields 

are available, the PINN outputs are directly compared to the DNS data. In the experimental TBL case, 

where no ground truth is available, we evaluate performance using the 20% of particle trajectories that 

were excluded from training. Velocity error is estimated from these withheld trajectories, while acceler-

ation is evaluated from the second-order derivatives obtained via TrackFit reconstruction. The NRMSE 

is computed using the following metric: 

𝑒𝜑 = (
< ‖𝜑𝑝𝑟𝑒𝑑 − 𝜑𝑒𝑥𝑎𝑐𝑡‖
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2 >

)
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2

,                 < 𝜑 >=
1

|Ω|
∫ 𝜑(𝑥)𝑑𝑠 (16) 

For velocity error, we compute the fluctuation velocity error by subtracting the mean velocity from each 

sample. The results show that NRMSE generally increases with inter-particle distance. However, in 

contrast to the HIT case—which is highly sensitive to particle sparsity—both the synthetic and experi-

mental TBL cases exhibit significantly greater robustness, maintaining relatively low error even at larger 

inter-particle spacings. 

 

 
Figure  10. NRMSE of PINN results for all test cases 

5 Conclusions 

This study highlights PINNs' effectiveness for reconstructing detailed flow fields from sparse and 

dense LPT datasets. PINNs consistently preserve velocity gradients and pressure fields by enforcing 

incompressible Navier-Stokes equations. While HIT reconstructions were sensitive to particle spacing, 

TBL reconstructions—both synthetic and experimental—showed remarkable robustness, maintaining 

key flow features even at lower densities. Advanced optimization methods, such as SOAP, adaptive 

residual sampling, and neural tangent kernel-based loss balancing, were crucial for enhancing stability 



 

and accuracy. Overall, PINNs combined with these optimizations provide a robust and accurate frame-

work for flow reconstruction from sparse measurements. 
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