Gansch, Roman und Putze, Lina und Koopmann, Tjark und Reich, Jan und Neurohr, Christian (2025) Causal Bayesian Networks for Data-driven Safety Analysis of Complex Systems. In: 9th International Symposium on Model-Based Safety and Assessment, IMBSA 2025, Seiten 222-237. Springer Cham. 9th International Symposium on Model-Based Safety Assessment (IMBSA 2025), 2025-09-24 - 2025-09-26, Athen, Griechenland. doi: 10.1007/978-3-032-05073-1_15. ISBN 978-303205072-4. ISSN 0302-9743.
|
PDF
861kB | |
|
PDF
2MB |
Offizielle URL: https://link.springer.com/chapter/10.1007/978-3-032-05073-1_15
Kurzfassung
Ensuring safe operation of safety-critical complex systems interacting with their environment poses significant challenges, particularly when the system's world model relies on machine learning algorithms to process the perception input. A comprehensive safety argumentation requires knowledge of how faults or functional insufficiencies propagate through the system and interact with external factors, to manage their safety impact. While statistical analysis approaches can support the safety assessment, associative reasoning alone is neither sufficient for the safety argumentation nor for the identification and investigation of safety measures. A causal understanding of the system and its interaction with the environment is crucial for safeguarding safety-critical complex systems. It allows to transfer and generalize knowledge, such as insights gained from testing, and facilitates the identification of potential improvements. This work explores using causal Bayesian networks to model the system's causalities for safety analysis, and proposes measures to assess causal influences based on Pearl's framework of causal inference. We compare the approach of causal Bayesian networks to the well-established fault tree analysis, outlining advantages and limitations. In particular, we examine importance metrics typically employed in fault tree analysis as foundation to discuss suitable causal metrics. An evaluation is performed on the example of a perception system for automated driving. Overall, this work presents an approach for causal reasoning in safety analysis that enables the integration of data-driven and expert-based knowledge to account for uncertainties arising from complex systems operating in open environments.
| elib-URL des Eintrags: | https://elib.dlr.de/215179/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
| Titel: | Causal Bayesian Networks for Data-driven Safety Analysis of Complex Systems | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | September 2025 | ||||||||||||||||||||||||
| Erschienen in: | 9th International Symposium on Model-Based Safety and Assessment, IMBSA 2025 | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| DOI: | 10.1007/978-3-032-05073-1_15 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 222-237 | ||||||||||||||||||||||||
| Herausgeber: |
| ||||||||||||||||||||||||
| Verlag: | Springer Cham | ||||||||||||||||||||||||
| Name der Reihe: | Lecture Notes in Computer Science | ||||||||||||||||||||||||
| ISSN: | 0302-9743 | ||||||||||||||||||||||||
| ISBN: | 978-303205072-4 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Causal Inference, Safety Analysis, Fault Trees, Bayesian Networks, Automated Driving | ||||||||||||||||||||||||
| Veranstaltungstitel: | 9th International Symposium on Model-Based Safety Assessment (IMBSA 2025) | ||||||||||||||||||||||||
| Veranstaltungsort: | Athen, Griechenland | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 24 September 2025 | ||||||||||||||||||||||||
| Veranstaltungsende: | 26 September 2025 | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||||||||||
| HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||||||||||
| Standort: | Oldenburg | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Systems Engineering für zukünftige Mobilität > Systems Theory and Design | ||||||||||||||||||||||||
| Hinterlegt von: | Putze, Lina | ||||||||||||||||||||||||
| Hinterlegt am: | 30 Sep 2025 15:24 | ||||||||||||||||||||||||
| Letzte Änderung: | 14 Okt 2025 13:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags