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Abstract. Ensuring safe operation of safety-critical complex systems
interacting with their environment poses significant challenges, partic-
ularly when the system’s world model relies on machine learning algo-
rithms to process the perception input. A comprehensive safety argu-
mentation requires knowledge of how faults or functional insufficiencies
propagate through the system and interact with external factors, to man-
age their safety impact. While statistical analysis approaches can support
the safety assessment, associative reasoning alone is neither sufficient for
the safety argumentation nor for the identification and investigation of
safety measures. A causal understanding of the system and its interaction
with the environment is crucial for safeguarding safety-critical complex
systems. It allows to transfer and generalize knowledge, such as insights
gained from testing, and facilitates the identification of potential im-
provements. This work explores using causal Bayesian networks to model
the system’s causalities for safety analysis, and proposes measures to as-
sess causal influences based on Pearl’s framework of causal inference. We
compare the approach of causal Bayesian networks to the well-established
fault tree analysis, outlining advantages and limitations. In particular, we
examine importance metrics typically employed in fault tree analysis as
foundation to discuss suitable causal metrics. An evaluation is performed
on the example of a perception system for automated driving. Overall,
this work presents an approach for causal reasoning in safety analysis
that enables the integration of data-driven and expert-based knowledge
to account for uncertainties arising from complex systems operating in
open environments.
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1 Introduction

Ensuring the safe operation of safety-critical complex systems that interact with
their environment based on information obtained by perception components is
a challenging endeavor. In particular, such perception components often rely
on complex algorithms like machine learning to construct a world model out
of sensory input. The verification and validation of these is notoriously difficult
and reliance on statistical, non-causal metrics is unsatisfactory from a safety
perspective [6]. Essentially, safety engineers are not interested in associations, but
in causal explanations of how faults and failures are propagated within a system.
An example for this is the well-known fault-error-failure model of Avizienis et al.
[4]. Therefore, it is indispensable to integrate causal metrics for the safeguarding
of safety-critical systems, especially regarding the perception components. In
order to obtain causal information about complex systems and faults in their
perception, Kramer et al. suggest to adapt fault tree analysis (FTA) for this
task [16]. However, restricting the causal graph structure to trees drastically
limits modeling possibilities. Moreover, the quantification of fault trees rests on
the assumptions of stochastic independence of its base events which can conflict
with handling of confounders. To overcome these inadequacies, we propose to use
causal Bayesian networks (CBNs) to model and analyze the causalities behind
fault propagation in complex systems, based on Pearl’s causal theory [21].
The contributions of this work can be summarized as follows:

e a novel approach relying on CBNs combined with suitable causal metrics,
e a comparison between fault trees and CBNs, with a focus on quantification,
e evaluation of the approach for an automated driving perception system.

Following the introduction of section 1, we cover the preliminaries and related
work in section 2, i.e. the role of causality in safeguarding complex systems.
Section 3 covers in detail the example of an perception system for automated
driving, before concluding with section 4.

2 Causality in Safety Analysis

Safety of technical systems is achieved by applying multiple measures in combina-
tion during the complete system life-cycle. An integral part of safety engineering
is the safety analysis. This analysis supplements the synthesis step during design
and verifies that certain design criteria are fulfilled. Goals of the safety analy-
sis are to identify faults and functional insufficiencies that propagate through
the system and lead to hazards, as well as estimating the overall residual risk. A
common approach is to model the fault propagation pathways (fault-error-failure
chain) [4]. A wide range of methods have been adopted in industrial practice,
each of which is useful within a certain context. Since the advent of highly au-
tomated systems adaption of established analysis methods have been done. For
example, the ISO 21448 standard [11] recommends the application of System-
Theoric Process Analysis (STPA) and Cause Tree Analysis (CTA) (an adaption
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of FTA) in combination with statistical analysis of the occurrence of triggering
conditions (TCs). However, these simple methods often fail to include the com-
plex relations or neglect the causal mechanisms. In particular, when artificial
intelligence is utilized these practices are either too abstract or rely on unsat-
isfiable assumptions. In this paper we explore the use of CBNs focusing on a
comparison with FTA. CBNs offer a quantitative approach to investigate causal
influences on safety based on a data-driven approach. In contrast to FTA this
approach does not require independence of specific factors and allows to model
complex dependencies. Further it enables a shift from deterministic causation
to probabilistic causation, i.e., a cause does not always lead to an effect, but
rather might be suppressed due to factors not included in the model. In the next
section we provide an overview of causal inference with examples illustrating its
relevance for safety engineering.

2.1 Causal Inference

Causal theory formally describes the influence of a cause on an effect. It has
been pioneered and frequently applied in the field of economics, sociology and
medicine [21,22]. Recently, causal inference also has gained a lot of traction in
the engineering domain [20,12,19,17,15]. Pearl describes causality with a 3-step
ladder: The first step association is about predicting the outcome Y under ob-
servations X which can be described by purely statistical quantities. The second
step intervention provides an answer to causal queries of the form: "Which effect
Y can be observed in a population if the value of X is intervened on?". The third
step counterfactual is highest form of causality. It answers the questions "What
would have been Y if X had been intervened on?".

Causal intervention queries, and even some counterfactual queries, can be

answered by means of intervention experiments or by estimation from observa-
tional data. In an intervention experiment the intervention is performed while
collecting data, like e.g. in randomized control trials (RCTs). However, perform-
ing an intervention experiment is often not possible due to constraints in the
experimental environment or ethical considerations.
The do-calculus introduced by J. Pearl allows to evaluate interventional queries
from observational data without additional experiments, a characteristic that
is termed identifiability [21]. The do-calculus provides inference rules to refor-
mulate an interventional query in the form P(Y|do(X = z)) to an expression
only containing conditional probabilities obtainable from observational data. In
order to apply the do-calculus, a causal model expressing the cause-effect rela-
tionships between variables is required. In this paper we use graphical causal
models, which are directed acyclic graphs (DAG) to model these. In this nota-
tion, an intervention do(x) can be seen as removing all incoming edges to X.

2.2 Causal Bayesian Networks

The advantage of using a graphical notation for the causal models is, that it
integrates well with quantification of the variables as it is inherently similar



4 R. Gansch et al.

to Bayesian networks (BN) [10] since both are built from DAGs. In a BN the
direction of the arrows indicate the order of factorization of the joint probability
distribution into conditional probability tables (CPT). The order of factorization
can be freely chosen as it is only based on correlation which can be reformulated
by the Bayes theorem. By selecting the arrow directions according to the causal
relationships we obtain a causal Bayesian network (CBN).

In a CBN correlational as well as causal inferences can be performed. Previous
work has explored the use of BN and CBN for safety, cf. Table 1. We distinguish
between BNs that use only correlational structures and CBNs that use causal
structures. A BN can only be used for correlational inference, while a CBN has
the advantage of a causal structure interpretation for the modeler.

Building a CBN model can be sep-
arated into the task of structuring the ; )
DAG and quantifying the CPTs. For Structure Correlation Causation
both either an expert-based or data-  Correlation [10,13,23] -
driven approach can be chosen. Learn-  Causation [1,2,27,28] [8,17,20,15,14]
ing the causal structure from data is re-
ferred to as structure learning or causal Table 1. Related work on (causal)
discovery [22]. Learning the conditional Bayesian network for safety analysis.
distribution from data is termed param-
eter learning. The graph structure and the parameters can also be obtained
through ezpert knowledge [18] or by combined approaches feeding expert-based
constraints into learning algorithms. For our proposed approach of using CBNs
for safety analysis, we favor the expert-based approach to define the structure
and parameter learning from data as it combines the best of both worlds. An
expert-based structure is more appropriate to argue to capture the underlying
causality, while expert judgment on quantifying probabilities is susceptible to
bias [26].

Inference

The nodes in the CBN correspond to random variables whose value ranges
can be dichotomous, categorical, ranked, or even continuous. Dichotomous vari-
ables only contain two states which have a binary true/false character. A FTA
model only consists of these kind of variables. For a SOTIF oriented safety anal-
ysis the triggering conditions in the domain have to be included. These often
require a continuous distribution or a mapping to categorical variables with mul-
tiple states (e.g., weather: sun, cloudy, rain, snow). While inference calculations
can generally be performed on continuous multivariate distributions, it requires
significant computational resources. Further, accurately quantifying continuous
distributions demands a large amount of data. In practice, continuous distri-
butions are either discretized to categorical nodes or described as parametric
distributions that allow to analytically pre-solve the necessary integrals. The
CBN examples in this paper only use categorical variables as these are simi-
lar to the dichotomous variables used in FTA. For implementation we use the
python library pyAgrum [7].
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2.3 From Correlation to Causation

To grasp the differences between association and causality and how it impacts
safety engineering we examine some examples.

Perception | Perception | Perception Perception | Perception
FN 5.52% FN 8.20% FN ] 100.00%] FN 1’ 8.20% FN 100.00
TP 94.48% L 91.80% TP | L 91.80% TP
A A A
Luminance Luminance Luminance Luminance Luminance
low 15.00% low 100.00 low 22.29% low 100.00 low 15.00%
medium 45.00%| | | medium medium 28.55%| | | medium + medium 45.00%
high 40.00% high | high 49.16% high | high 40.00%
(a)CBN (b)P(P|L) ()P(LIP)  |(d)P(P|do(low)) (e) P(L|do(FN))

Fig. 1: Causal Bayesian network (CBN) consisting of two nodes: Perception (P)
and Luminance (L) (left). Correlational inference is agnostic to the causal di-
rection (center). Causal inference depends on the causal direction (right). Bold
blue indicates a causal inference along a causal pathway, while a dashed gray
indicates deletion due to intervention.

First, consider a simple two node graph as shown in Figure 1a. It represents
the causal mechanism of a typical perception example for automated driving,
where we are interested in the perception performance under the influence of a
triggering condition. The upper node Perception (P) represents the performance
of a camera-based object detection in terms of false negatives (FNs) and true
positives (TPs). The lower node Luminance (L) corresponds to the light intensity
of an object, ranked from low to high. To a human it is intuitively clear that
luminance affects the performance of the camera-based object detection and
not vice-versa. However, based on association alone we cannot distinguish both
causal directions, cf. Figure 1b and 1lc. Conditioning on either of both variables
leads to changes in the distribution of the outcome variable compared to the
observed distribution of Figure la. The correlation between the two variables is
agnostic to the underlying cause-effect structure. In contrast, causal intervention
queries can expose the cause-effect structure. Intervening on luminance has an
effect on the perception, while changing the perception result does not affect the
luminance, cf. Figure 1d and le. Whether an intervention reveals some effect
depends on the direction of the causal paths.

Another distinction between correlational and causal queries arises due to
so-called confounding. The issue of confounding is encountered when there ex-
ists a common-cause, like Weather in Figure 2. From the result of the correla-
tional query P(P|L) it seems that a high luminance improves the perception
performance, cf. Figure 2(b). But this result is affected by the change in the
distribution of the weather conditions when conditioning on luminance. If we in-
vestigate the causal effect based on an intervention, i.e. if we keep the observed
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Perception | Perception

FMj 55;/j| FNj 476%”
™ SusH) ™ 95,240

/4

Luminance Luminance

low 15.00% low
medium 45.00%4 medium
high 10.00% high 100,009

Perception

Weather Weather
sun 60.00% sun 82507
rain 30.00% rain 15.00%
snow 10.00% snow 2,504

(a) (b)

Fig.2: (a) Causal Bayesian network for perception performance influenced by
luminance and weather. Analysis results based on (b) correlation with P(P|L =
high) and (c) causation with P(P|do(L = high)). Safety measure design based
on (d) correlation and (e) causation. Probabilities are given in Table 5.

distribution of the weather conditions, we encounter indeed that high luminance
on its own will decrease the performance of the perception, cf. Figure 2(c).

The presented results have implications for the design of potential safety
measures. In the given example, this can be a simple mechanism that modifies
the brightness of the camera pictures in the pre-processing step of an Al-based
object detection. Based on the result of the correlation analysis, a safety en-
gineer will favor high brightness as a higher luminance correlates with better
performance, leading e.g. to the CBN of Figure 2(d). Compared to the marginal
FN rate of the unmodified structure, the FN rate including the safety measure
actually deteriorates from 5.5% to 5.66%. This demonstrates how interpreting
correlation as causation can lead to a counterproductive system design. In con-
trast, applying the results of the intervention analysis to design safety measures,
a shift of towards medium brightness seems most beneficial, resulting in the CBN
of Figure 2(e). Here, the marginal FN rate has actually improved from 5.5% to
5.39% providing an increased performance.

3 Use Case: Perception of Automated Driving Systems

To illustrate the application of CBNs and causal importance metrics for safety
analysis of complex systems and to compare them to a classical FTA, we consider
as example a perception subsystem commonly used for ADSs, cf. Figure 3. Al-
though the data is not from an actual implemented perception system, it closely
reflects a potential real-world application. The perception subsystem consists
of two redundant sensor modalities each with a software-based perception al-
gorithm to classify objects from sensor data. Both modalities may employ a
different sensing principles and different perception algorithms each with spe-
cific functional insufficiencies and corresponding sensitivities to environmental
TCs, e.g., Occlusion/ObjectSize for Sensor 1 and TrafficDensity /ObjectDistance
for Sensor 2. The performance reduction of each sensor as well as the perception
subsystem can be captured using the FN rate as indicator.
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3.1 Causal Modeling

A safety analysis seeks to identify the e «

causal pathways of faults and functional Tj ZbJLc(sZe
insufficiencies emerging into system fail- =1

ures afld pinpoint areas of improvement. %133 B i.;.::’:,jm,
A straightforward approach to model the (i ]

perception system of Figure 3 in a FTA as 54 TrafficDensity

proposed for SOTTF oriented analysis [29] |_3¢_ObjectDistance |

is shown in Figure 4a. The TCs are in-

cluded as base events that activate a sen- Fig.3: Example architecture for an
sor insufficiency. As required by FTA, the ADS perception use case.

base events are assumed to be indepen-

dent.

Figure 4b models the same example as CBN. In contrast to FTA, CBNs are
not restricted to a tree structure with independent base events. While such tree
structure is usually adequate for modeling dependencies of a well-defined system
architecture, domain-level nodes often exhibit complex interdependencies, neces-
sitating a less restrictive framework. By modeling the example as CBN, depen-
dencies of Occlusion on TrafficDensity and ObjectSize can be taken into account.
Further, in the CBN the nodes representing active insufficiencies (SenlInsuff,
Sen2Insuff) are removed. These nodes do not represent actual causal artifacts
but rather serve as subsidiary constructs to represent probabilistic relations in
the FTA, which can be directly integrated into the CPTs of Senl and Sen2.

FNj 1.50% FNj 1.22%
™ 98.50 ™® 98.78

/4 N System f \

Occlusion
largely. 10.00%]
partly 45.00%
none 45.00%

ObjectDistance

far 30.00%
close 70.00%

ObjectSize TrafficDensity
small 20,009 high 30.00%
nnnnn ] 40.00% average 30,00
large 40.00 low 30.00%
Domain

(a) (b)

Fig. 4: Perception example modeled with (a) FTA and (b) CBN. The correspond-
ing (conditional) probabilities are given in Table 6 and 7.

Without the restriction to dichotomous nodes imposed by FTA, the nodes
of a CBN can be discretized into categorical variables. For example, Occlusion
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can be expanded into largely, partly and none. The refinement of node values
is a valuable tool to approximate reality more closely. To enable a comparison,
the CPTs assigned to the nodes in this example preserve the marginal rates
of the FTA base events. However, in the domain part the additional relations
between nodes are reflected in the CPTs, cf. Table 6, and in the system the
AND/OR gates have been modified to a non-perfect relation, deviating a few
percent, cf. Table 7. This reflects the semantic abstraction as we do not model
on a detailed level of bits and pixels but rather on a higher abstraction level of
objects in a camera picture. Therefore, we can not model fully deterministic fault
propagation and have to account for some error terms due to the abstraction.

3.2 Causal Safety Metrics

CBNs as well as fault trees allow for quantitative evaluation of fault and failure
propagation through the system. The state of the art in FTA are importance
metrics that assess the impact of base events (N;);cs on the top level event (T) to
provide a ranking. Several importance metrics have been defined in literature,
each providing a different ranking order [5,9,24]. For comparison with causal
analysis we focus on the Birnbaum (BB) importance and the Risk Reduction
Worth (RRW):

OP(T = fail) P(T = fail)
OP(N; = fail)’ (T = fail|N; = ~fail)’

The BB importance provides a sensitivity metric for a top event failure to a
base event. For independent basic events it can also be written as BB = P(T =
fail|N; = fail) — P(T = fail|N; = —fail). It is also referred to as structural
importance since it only responds to structural changes of the fault tree and
not to the failure rates of the basic event. In contrast, the RRW measures the
potential reduction in the probability of the top level event if the base event does
not occur.

Table 2 provides the calculated impor-
tances for both, the fault tree as well as BB 1e.y RRW
the CBN. The partial derivative of the BB

BB = RRW =
P

Trieeeri

importance is calculated by setting small Colﬁgie;if FTA CBN FTA CBN

soft evidences on the nodes (about 1%) ——

and estimating the difference quotient. We ObjectSize 3.78 3.12 2.8 1.50
Occlusion 3.36 439 14 1.33

observe slight deviations in the results of
the FTA and the CBN, which can be ex-
plained by the couplings between the TCs
and the non-perfect OR/AND gates in the
CBN. A significant difference occurs for
the BB importance of Occlusion, due to
the confounding effect of TrafficDensity.
While FTA importance metrics can be applied to CBNs, caution is required
when interpreting the results. By restricting fault trees to a tree structure with
independent base events, confounding effects are eliminated. This leads to equal-
ity of conditional probabilities P(Y|X = z) and interventional probabilities

TrafficDensity 2.94 3.35 oo 3.59
ObjectDistance 3.92 3.52 oo 2.31

Table 2: BB and RRW importance
for the TCs in the FTA and CBN
model, respectively.
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P(Fusion = FN|X = x) B P(Fusion =FN|do(X=x)) P(Fusion = FN|don(TD = (x, low)) _
e .-

4
0 1 2 3 4 5 6
obi .0 1 2 3 4 5 6 obi .0 1 2 3 4 5 6 paths {m, m}

small smallf highf
normal normal
averagep
large largel
Occlusion Occlusionp—————4 -] lowp

largely largely Path m;

partly partly high

none nonef
TrafficDensity[f~——~~{-—-—---======~+
highf

averagef

averagel
TrafficDensity

high

averagel

lowf

Path m,

low lowf

highf

ObjectDistance ObjectDistancef - -—--4-—=-=--=-—---

averagef

far farf

closel fowp

(a) (b) (c)

close

Fig. 5: Tornado charts for (a) correlational analysis, (b) causal intervention anal-
ysis for all TCs (X)), and (c) for the categorical analysis of the path-specific effects
of TrafficDensity (TD) on Fusion=FN via {7, 72}, m and my. The vertical line
indicates the marginal probability P(Fusion = FN).

P(Y|do(X = z)) querying alongside the causal direction of the fault tree. Con-
sequently, associative importance metrics can be interpreted causally in the FTA.
However, for structures like the CBNs that cover more complex dependencies,
this equality does not apply, as outlined in subsection 2.3. Figure 5 provides
a visual comparison of the conditional and interventional probabilities resulting
from the CBN in a tornado chart. For Occlusion, which has ObjectSize and Traf-
ficDensity as confounding nodes, a significant deviation between correlation and
causation can be observed. This illustrates, the importance of causal metrics for
a comprehensive evaluation of CBNs.

In causal literature the average causal effect (ACE) and relative causal effect
(RCE) are commonly used [22,15]. These metrics evaluate the structural impor-
tance of a node, similar to the BB importance. Both, the ACE and RCE are
originally defined for dichotomic states as the absolute and relative difference of
both possible interventions states. To apply both metrics for the SOTIF analysis,
the metrics need to be generalized to categorical variables. For TCs it is usually
possible to define a reference state x,.s representing the nominal conditions to
which others are compared, like 'none’ for Occlusion. Thus, we define

P(Y|do(X = z))

ACE = P(Y|do(X = z)) — P(Y|do(X = 2,.5)), RCE = P Tdo0X = 5re))

(1)

where the comparative value z,.; can either be -~z for dichotomic analysis or
a reference value for a categorical analysis. For further analysis we consider the
RCE as relative metrics are easier to interpret. Safety measures to improve the
system have to focus on mitigating the influence of TCs with a high RCE. How-
ever, similar to BB importance, the RCE does not consider the overall occurrence
of a triggering condition and, hence, may not provide the best improvement of
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the system performance. It rather provides an argument to mitigate systematic
issues leading to an increase of risk. To account for the occurrence of the TCs and
evaluate how probability shifts affect the overall system performance, the RRW
can be generalized to categorical variables and transferred to a causal metric,
referred to as Interventional Risk Reduction Worth (IRRW):

P
MRV = PVIX = 2rep)”

PY)
(Y[do(X = zper))”

I =
RRW P

Table 3 shows the results of the categorical and dichotomic calculation of
RCE, RRW and IRRW.

Triggering Categorical Dichotomic
Condition State

RCE RRW IRRW RCE RRW TRRW
Obiecy  Small 266 3.50 1.50 1.50
Sizi normal 1.00 1.14 1.14 0.79 0.89 0.89
large  0.51 0.33 0.73 0.73
largely 3.95 2.41 1.33 1.20
Occlusion partly 2.23 2.49 1.97 1.43 1.25 1.26
none  1.00 0.40 0.69 0.79
high  9.64 7.46 3.59 3.59
TDZZH;;’ average 1.6 4.64 4.64 0.29 0.83 0.83
Y low 1.00 0.17 0.77 0.77
Object  far 5.36 536 2.31 2.31
Distance close 1.00 Z81 B4l 0.19 0.43 0.43

Table 3: Categorical and dichomotic evaluation of RCE, RRW and IRRW. Ref-
erence values are highlighted in gray.

Multiple interventions Besides single interventions, it is also possible to calcu-
late multiple, combined interventions P(Y|do(X; = x1, Xo = xo,...)) [21]. This
resembles the cut sets analysis in FTA, as it exposes cases where multiple TCs
are necessary for a performance decrease of performance. Although an arbitrary
number of interventions is possible, in the following we focus on pairwise inter-
ventions. Analogously to equation (1) we calculate the RCE? as:

P(Y|do(X1 = z1, X3 = x2))
(Y[do(X1 = 1 rep, X2 = T2,ref))

2
RCEZ =

Figure 6 shows the RCE? for all pairwise combinations of TCs in our per-
ception example. Notably, TCs with a high impact from single intervention are
also pronounced in the pairwise interventions. This is not true in general, as
a positive and negative causal impact from two nodes may cancel each other.
The pairwise intervention (Occlusion=largely, TrafficDensity=high) exhibits the
highest RCE? ~ 32.1, primarily due to the Fusion node, whose CPT resem-
bles that of an AND-gate. Interventions that influence both causal paths to an
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ObjectSize Occlusion TrafficDensity ObjectDistance
r T T T |
small normal large largely partly none high average low far close
g 9.72 7.86 4.92 [26.42 4.87 298 |1434 275
ol ©@
N _
w0 ©
g 13 590 296 1.00 [10.23 1.56 1.00 | 5.48 1.00
2|8
° [}
% 4.92 1.98 0.51 5.24 0.77 0.48 2.80 0.50
[ >
qé\ 9.72 590 4.92 3210 591 3.95 [20.31 3.95
- o
of >
3 £] 786 296 1.98 18.16 3.34 2.23 |11.49 2.23
5] aQ
o
v
5| 492 100 0.51 813 150 1.00 | 5.14 1.00
{=
_'51 26.42 10.23 5.24 |32.10 18.16 8.13 23.02 291
> =
.g Y
la g 4.87 1.56 0.77 5.91 3.34 1.50 1.85 1.33
£l &
=
g 298 1.00 0.48 | 3.95 223 1.00 0.76  1.00
8'
S E 14.34 5.48 2.80 | 20.31 11.49 5.14 |23.02 1.85 0.76
k)
a)
© Q
_ﬁg 8] 275 100 050|395 223 1.00 291 133 1.00
Sl [}

Fig. 6: RCE%‘; for pairwise interventions on TCs with the grayed states used as
reference. Each intervention combination is given by a row and column pair.

AND-gate typically result in a high causal impact — see also the combinations
(TrafficDensity, ObjectSize) or (Occlusion, ObjectDistance). In contrast, pair-
wise combinations located in just a single incoming path to the Fusion node
are ranked relatively low, as the AND-characteristic suppresses the causal im-
pact. We conclude that regarding pairwise inventions on TCs, the Fusion node
is the most critical component — as expected from a majority voting pattern.
Therefore, improving on the Fusion node, e.g., the underlying algorithm, leads
to a substantial FN rate reduction. Other safety measures should focus on in-
dividual contributors, i.e., (TrafficDensity=high, Occlusion=largely) and (Traf-
ficDensity=high, ObjectSize=small), by fortifying perception algorithms against
these.

Path-specific Interventions In the CBN approach, the graph is no longer re-
stricted to a tree. Thus, there may be multiple paths linking a variable of interest
to the outcome. E.g., the CBN of Figure 4 contains two different paths connect-
ing ’TrafficDensity’ and 'Fusion’, namely m; : TrafficDensity — Occlusion —
Senl — Fusion and 75 : TrafficDensity — Sen2 — Fusion. The contribution to
the overall causal effects can differ along such paths. Therefore, to design pre-
cise safety mechanisms, an examination of the effects along individual paths is
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needed. To achieve this, we suggest path-specific effects that limit the scope of
causal effects to individual paths [25].

The main idea is to model two inter-
ventions for a variable X at the same time. APE RPE 4LE
Set X = x for the path(s) 7 under inves- Path State  (x10-¢)
tigation and X = x,.y for the remaining high  0.08 1.19 0.02
paths, denoted by do, (X = (z, zyer)). For m average 0.03  1.07 0.12
example, to investigate the path-specific low  0.00 1.00 -
effect of TrafficDensity=high on Fusion -
via the path 71, the distribution of Traffic- high ~ 2.86 813 0.82

. . 72 average 0.20 1.50 0.82
Density is replaced by setting TrafficDen- low 000 100 -
sity=high as input for Occlusion and si-
multaneously to a comparative value, such
as —high or low, as input for Sen2. As in
subsection 3.2, the comparative value can
refer to the value’s negation (dichotomic
analysis) or to a reference value (categorical analysis).

Let us remark that the analysis of path-specific effects is a counterfactual
query. In general, the path-specific effect do. (X = (z,2rcf)) on a variable Y via
a set of paths 7 can be calculated form observational data if the causal effect
P(Y|do(X = x)) is identifiable and the value assignment of X is unambiguous.
For DAGs without latent confounding the latter condition holds if 7 does not
contain any causal paths from X to Y which start with the same arrow as a causal
path from X to Y that is not in =, cf. [3, Theorem 5]. Figure 5c¢ visualizes the
path-specific effects of TrafficDensity on Fusion via different paths. The tornado
chart shows the path-specific effects for 7 = {m,m} — equivalent to the overall
causal effect — and then for 7, and 7 on their own. The comparison of these
path-specific effects indicates that almost the entire causal effect is transported
via mo. For a more detailed analysis of path specific effects we introduce the
following metrics

Table 4: Categorical evaluation of
path-specific effects of TrafficDen-
sity on Fusion=FN.

APE = P(Y|dox(X = (2, 2res))) — P(Y]do(X = Zyey)),
P(Y]dor (X = (2, Zrcr)))

P(Vdo(X = 2rep)
APE _ P(Y|dor(X = (z,2ref))) — P(Y|do(X = Zyer))
ACE P(Y|do(X = 2)) — P(Y[do(X = 2rey))

RPE =

whose evaluation for m; and w9 is given by Table 4. The average and relative
path-specific effects APE and RPE are defined analogously to ACE and RCE,
cf. Shpitser et al.%, comparing an intervention to a comparative value for all
paths. In addition, the ratio of APE by ACE provides a comparison of the im-
pacts via the investigated paths against via the whole model. To interpret these
metrics a comparison of the different paths is required. The values estimated for
the example of Figure 4 are given in Table 4.

* The average path-specific causal effect is called ’effect along paths in 7 [25].
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4 Conclusion and Future Work

In this work, we considered CBNs for the safety analysis of safety-critical com-
plex systems. CBNs provide a promising alternative to FTA, particularly when
dealing with complex dependencies. FTA is not suited to grasp the fault and
failure propagation in such systems. Hence, CBNs become necessary to model
and analyze causal relations to ensure SOTIF. The key advantage is the com-
bined approach of systematically addressing uncertainties using data as well as
expert knowledge. To match FTA’s quantification potential, we propose several
causal importance metrics relying on causal inference. To account for the com-
plexity of CBNs we considered path-specific causal effects. Finally, we evaluated
the importance measures on an example perception system in the context of
automated driving.

There are two main directions for future work. Firstly, the approach needs
to be validated using real data coming from an actual complex system. As an
intermediate step synthetic data from a simulation can be helpful. Secondly,
when such data are available, causal learning (causal discovery) techniques can
be integrated in the approach to obtain or verify parts of the causal graph.
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- Conditional Probability Tables

Luminance
Weather low medium  high
0.6 sun 005 0.4 0.55 Lumi Perception
0.3 rain 0.2 0.6 0.2 (B“f“;]“ta"“e) Weather FN TP
0.1 snow 0.6 0.3 0.1 rightness
sun 0.04  0.96
Brightness (correlation) low rain  0.075 0.925
Luminance low medium  high snow  0.11  0.89
low 0.9 0.1 0 sun 0.035 0.965
high 0 0 1 medium rain 0.07  0.93
snow  0.09  0.91
Lumi . B“gh“:fss (ca“ff‘l)l sun 0.04 0.0.96
uminance ow medium high high rain 0.08 0.92
ow 0.9 01 o smow  0.105 0.895
medium 0 1 0
high 0 0.4 0.6

15

Table 5: Conditional probability tables for the confounding example of Figure 2.

Occlusion (CBN)

ObjectSize TrafficDensity ObjectSize TrafficDensity largely partly none
small 0.2 high 0.4 high 0.27 0.4 0.33
normal 0.4  average 0.3 small average 0.15 0.6 0.25
large 0.4 low 0.3 low 0.05 0.55 0.4
high 0.2 0.45 0.35

ObjectDistance Occlusion (FTA) normal average 0.1 0.45 0.45
low 0.1 0.4 0.5

far 0.3 largely 0.1

close 7 partly 0.45 high 0.05 0.5 0.45
none 0.45 large average 0.01 0.42 0.57

low 0.01  0.3715 0.6185

Table 6: Conditional probability tables for the domain nodes in section 3.

Sen2
Trafﬁchen- ObjectDis- PN TP
sity tance

il far 0.064 0.936
Heh close 0.008  0.992
averace far 0.0056 0.9944
rage close 0.004 0.996
low far 0.0024 0.9976
close 0.0032 0.9968

Senl
ObjectSize Occlusion  FN TP
largely  0.0495 0.9505
small partly  0.04  0.96
none 0.025 0.975
largely  0.03  0.97
normal partly  0.015 0.985
none 0.005 0.995
largely  0.025  0.975
large partly 0.0l  0.99
none  0.0025 0.9975
Fusion
Senl Sen2 FN
FN 0.95 0.05
FN TP 0.0001 0.9999
FN 0.0001 0.9999
™ TP 0 1

Table 7: Conditional probability tables for the

system nodes in section 3.



