Causal Bayesian Networks for Data-driven Safety Analysis of Complex Systems

Roman Gansch*, <u>Lina Putze</u>*, Tjark Koopmann, Jan Reich, and Christian Neurohr IMBSA, 25th September 2025

How to derive a comprehensive understanding of fault and failure propagation within complex safety-critical systems?

Overview

Hierarchy of Causality

Causal Bayesian Networks

- Modelling
- Form Correlation to Causation

Causal Safety Analysis

- Fault Trees vs. Causal Bayesian Networks
- Importance Metrics

Summary

Overview

Hierarchy of Causality

Causal Bayesian Networks

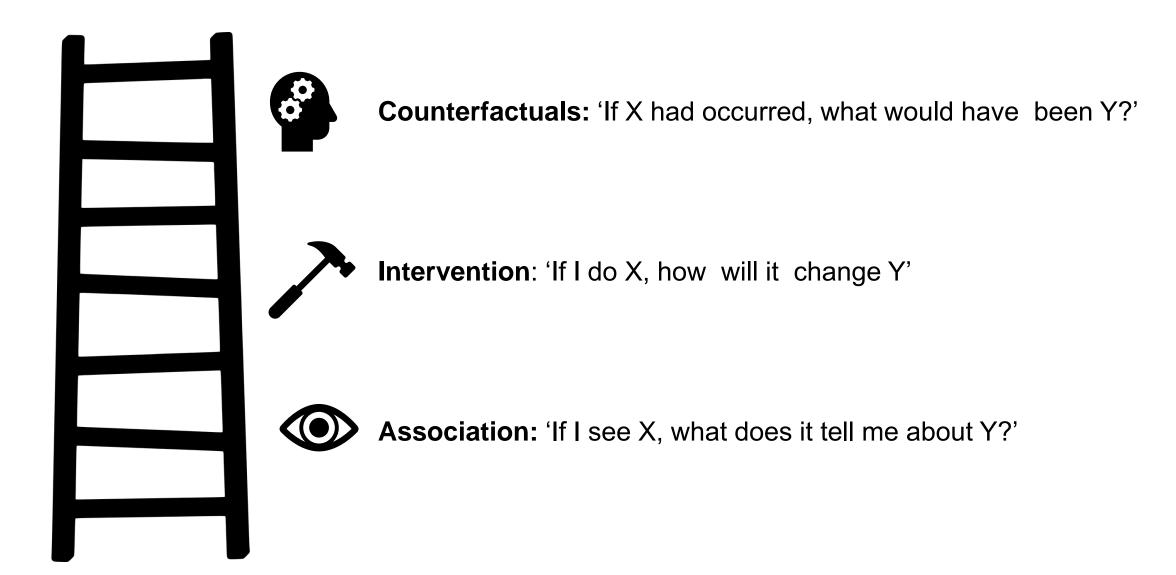
- Modelling
- Form Correlation to Causation

Causal Safety Analysis

- Fault Trees vs. Causal Bayesian Networks
- Importance Metrics

Summary

Hierarchy of Causality



Overview

Hierarchy of Causality

Causal Bayesian Networks

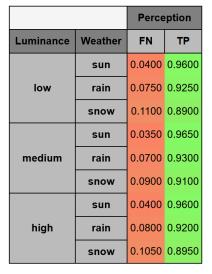
- Modelling
- Form Correlation to Causation

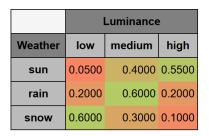
Causal Safety Analysis

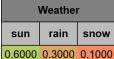
- Fault Trees vs. Causal Bayesian Networks
- Importance Metrics

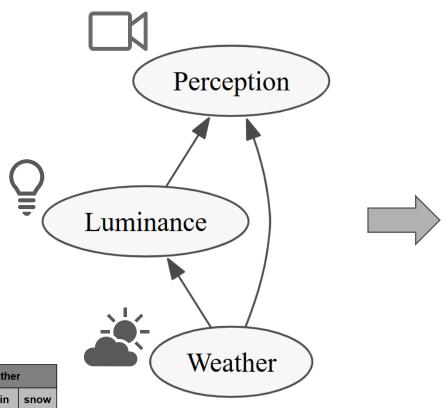
Summary

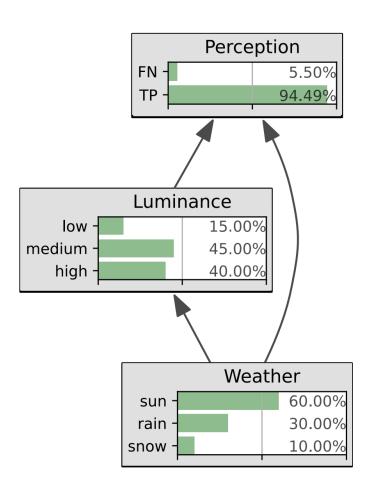
Causal Bayesian Networks Modelling



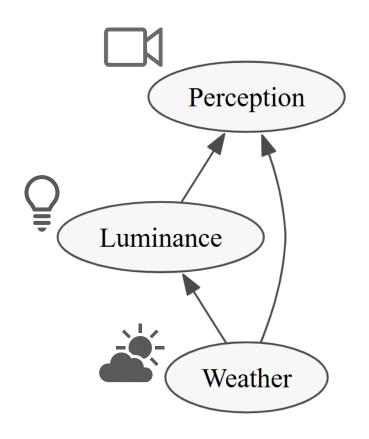








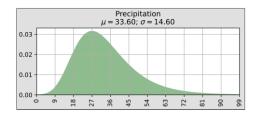
Causal Bayesian Networks Modelling



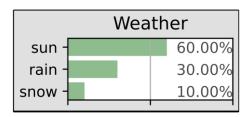
Variables

Dichotomous:

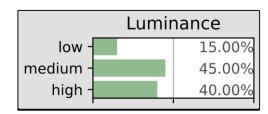
Continuous:

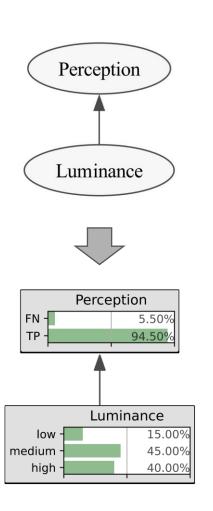


Categorical:



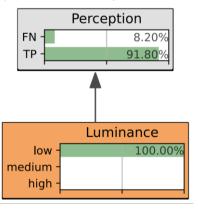
Ranked:



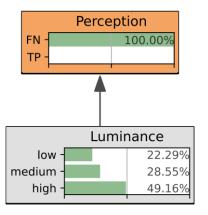


Correlation

P(Per|Lum = low)

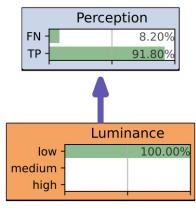


P(Lum|Per = FN)

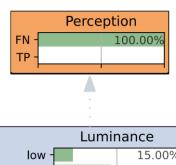


Causation

P(Per|do(Lum = low))



P(Lum|do(Per = FN))

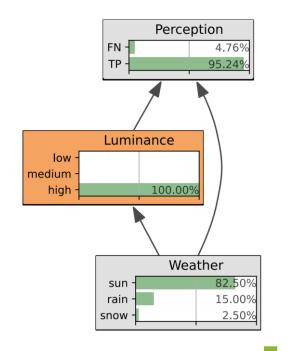


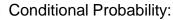
Perception 5.50% TP -94.49% Luminance 15.00% low -45.00% medium 40.00% high Weather sun 60.00% rain 30.00% 10.00% snow -

Probability:

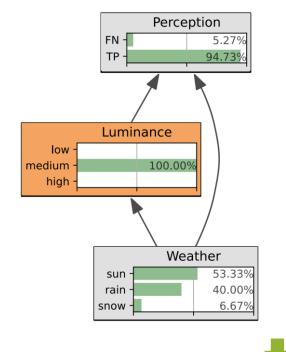
$$P(Per = FN) = 5.50\%$$

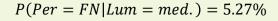
Correlation

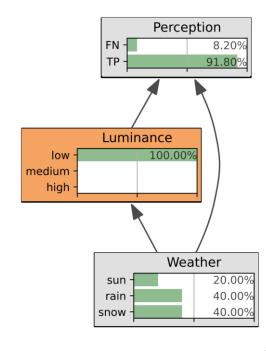


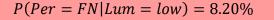


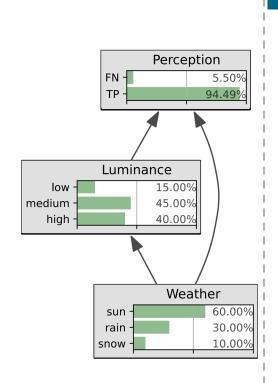
$$P(Per = FN|Lum = high) = 4.76\%$$







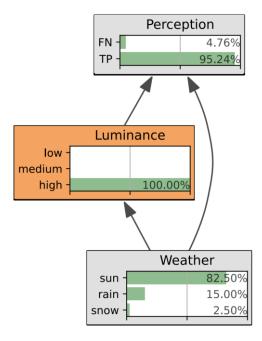




Probability:

$$P(Per = FN) = 5.50\%$$

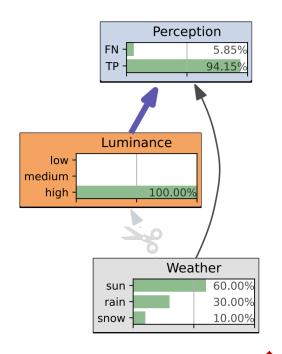
Correlation



Conditional Probability:

$$P(Per = FN|Lum = high) = 4.76\%$$

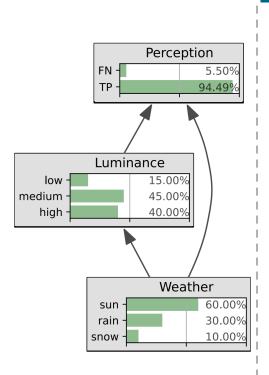
Causation



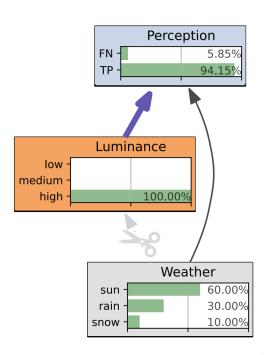
Interventional Probability:

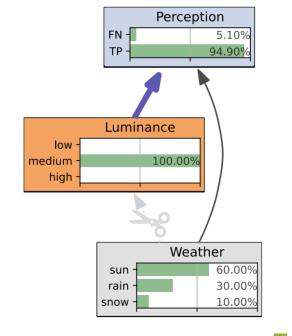
$$P(Per = FN|do(Lum = high)) = 5.85\%$$

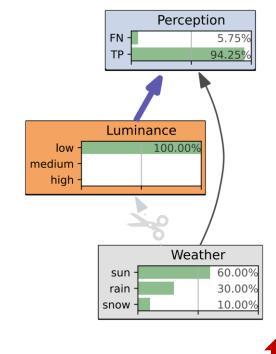
Causation



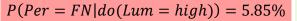
$$P(Per = FN) = 5.50\%$$





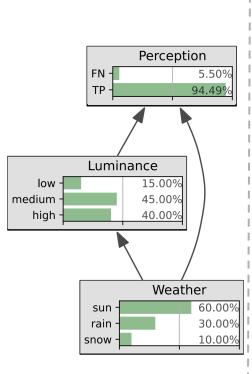


Interventional Probability:



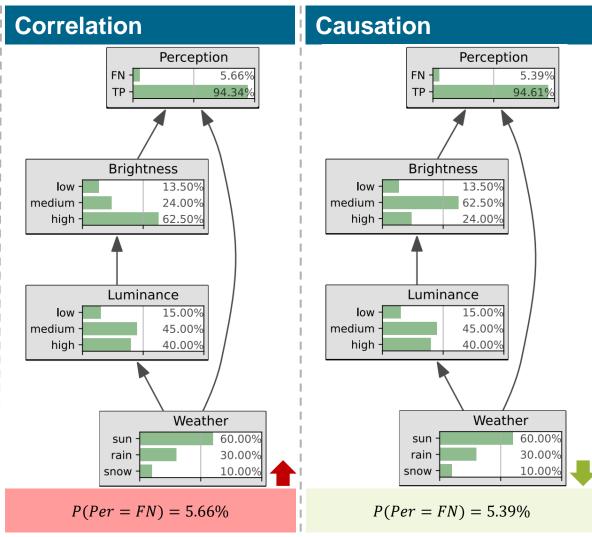
$$P(Per = FN|do(Lum = med.)) = 5.10\%$$

$$P(Per = FN|do(Lum = low)) = 4.76\%$$



Probability:

$$P(Per = FN) = 5.50\%$$



Overview

Hierarchy of Causality

Causal Bayesian Networks

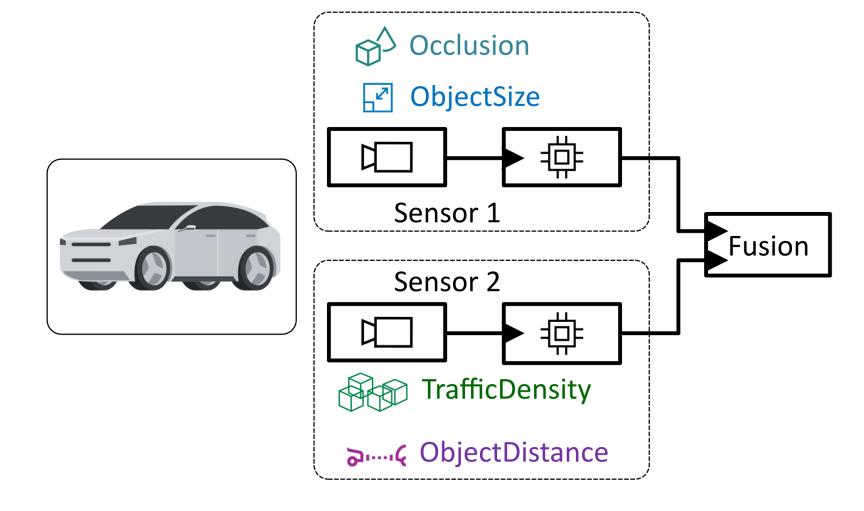
- Modelling
- Form Correlation to Causation

Causal Safety Analysis

- Fault Trees vs. Causal Bayesian Networks
- Importance Metrics

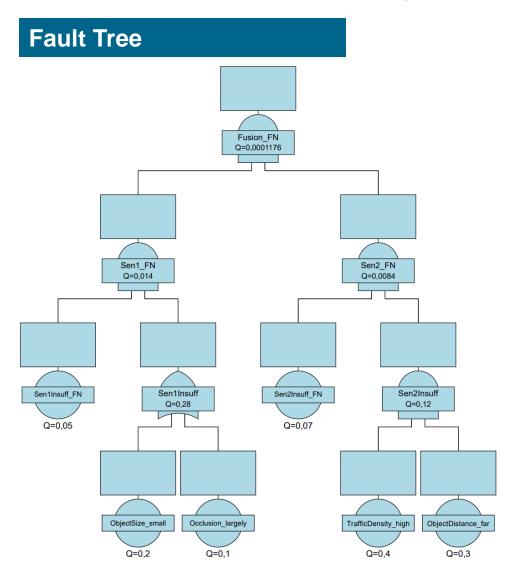
Summary

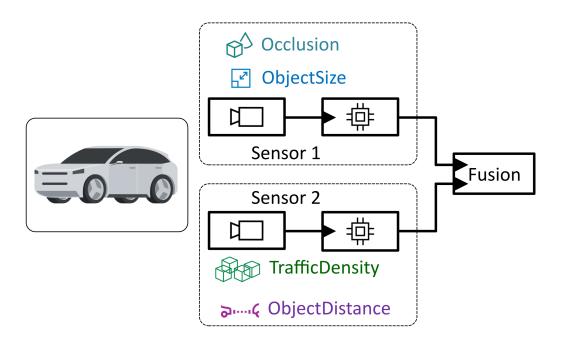
Causal Safety Analysis Example



Causal Safety Analysis

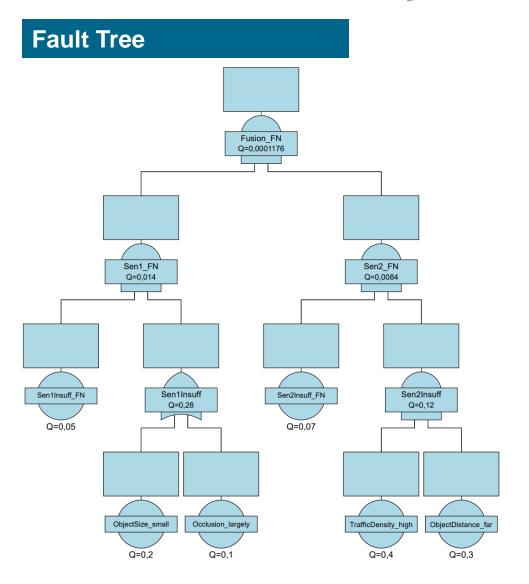
Fault Trees vs. Causal Bayesian Networks



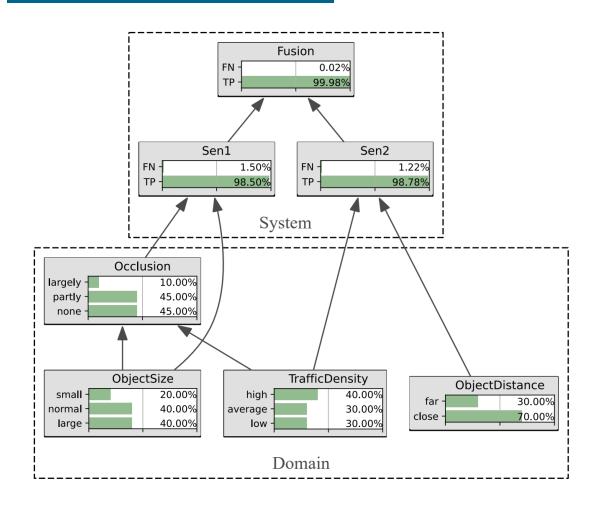


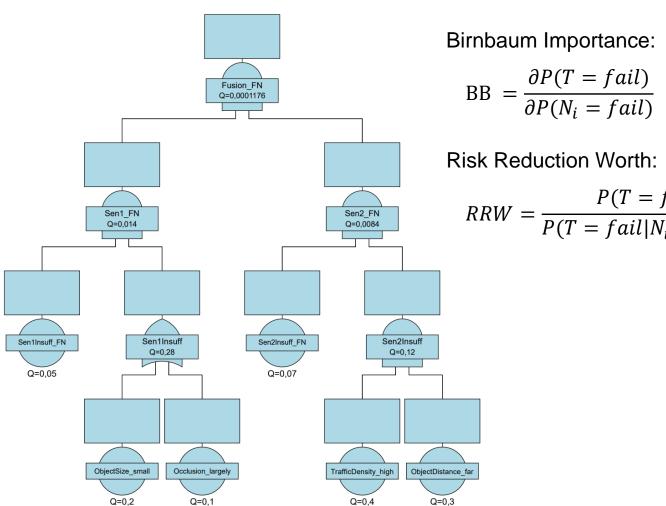
Causal Safety Analysis

Fault Trees vs. Causal Bayesian Networks



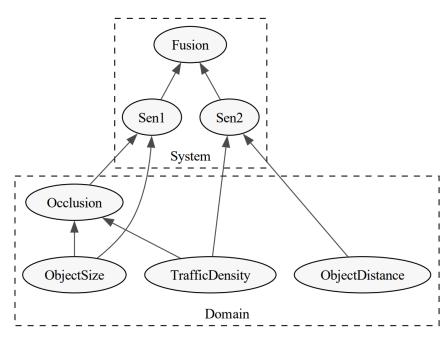
Causal Bayesian Network





Fault Tree

$$RRW = \frac{P(T = fail)}{P(T = fail|N_i = \neg fail)}$$



Fault Tree

Causal Bayesian Network

Birnbaum Importance:

BB =
$$\frac{\partial P(T = fail)}{\partial P(N_i = fail)}$$

BB =
$$\frac{\partial P(Y)}{\partial P(X=x)}$$

Risk Reduction Worth:

$$RRW = \frac{P(T = fail)}{P(T = fail|N_i = \neg fail)}$$
 $RRW = \frac{P(Y)}{P(Y|X = x_{ref})}$

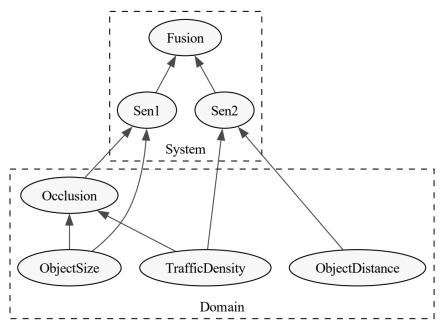
$$RRW = \frac{P(Y)}{P(Y|X = x_{ref})}$$

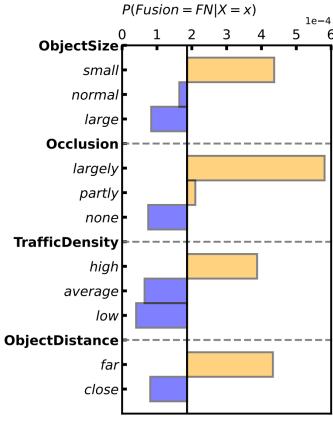
Triggering Condition	BB (*10 ⁻⁴)		F	RRW		
	FTA	CBN	FTA	CBN		
Object Size	3.78	3.12	2.80	1.50		
Occlusion	3.36	4.39	1.40	1.33		
Traffic Density	2.94	3.35	∞	3.59		
Object Distance	3.92	3.52	∞	2.31		

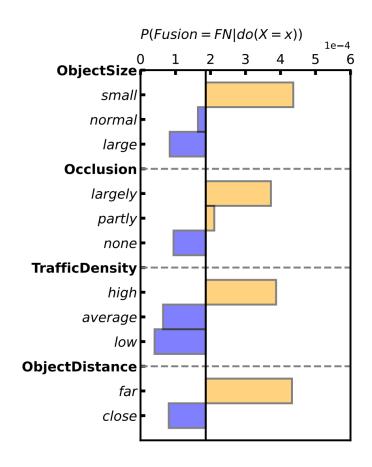
Fusion |

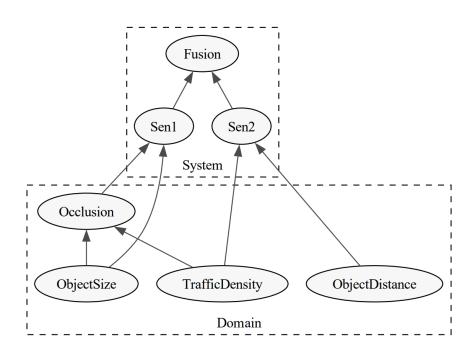
Correlation

Causation









Correlation

Birnbaum Importance:

BB =
$$\frac{\partial P(Y)}{\partial P(X = x)}$$

Risk Reduction Worth:

$$RRW = \frac{P(Y)}{P(Y|X = x_{ref})}$$

Causation

Average Causal Effect:

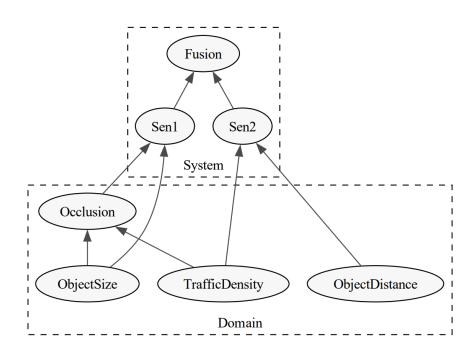
$$ACE = P(Y|do(X = x))$$
$$-P(Y|do(X = x_{ref}))$$

Relative Causal Effect:

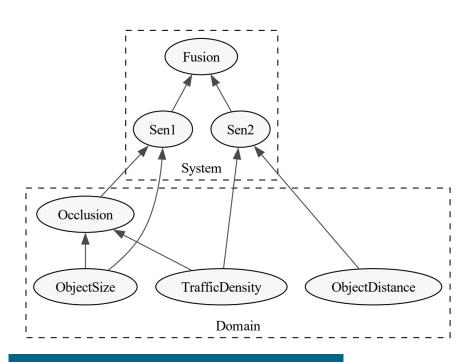
$$RCE = \frac{P(Y|do(X=x))}{P(Y|do(X=x_{ref}))}$$

Interventional Risk Reduction Worth:

$$IRRW = \frac{P(Y)}{P(Y|do(X = x_{ref}))}$$



Triggering Condition	State	RCE	RRW	IRRW	
Object Size	small	2.66		1.14	
	normal	1.00	1.14		
	large	0.51			
Occlusion	largely	3.95		1.97	
	partly	2.23	2.49		
	none	1.00			
Traffic	high	9.64			
Density	average	1.64	4.64	4.64	
	low	1.00			
Object	far	5.36	2.31	2.31	
Distance	close	1.00	2.31	۷.۵۱	



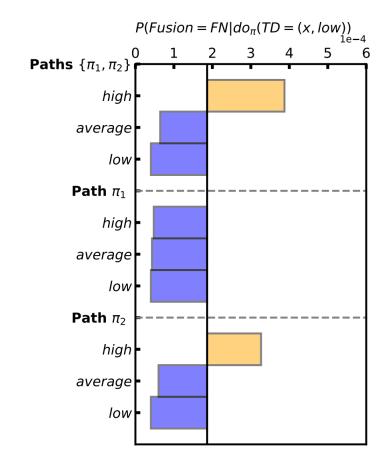
Multiple Interventions

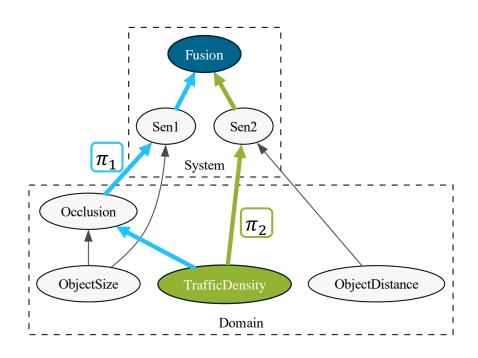
$$RCE_C^2 = \frac{P(Y|do(X_1 = x_1, X_2 = x_2))}{P(Y|do(X_1 = x_{1,ref}, X_2 = x_{2,ref}))}$$

		(ObjectSiz	re .	Occlusion		TrafficDensity			ObjectDistance		
_		small	normal	large	largely	partly	none	high	average	low	far	close
ObjectSize	small				9.72	7.86	4.92	26.42	4.87	2.98	14.34	2.75
	normal				5.90	2.96	1.00	10.23	1.56	1.00	5.48	1.00
	large				4.92	1.98	0.51	5.24	0.77	0.48	2.80	0.50
Occlusion	largely	9.72	5.90	4.92				32.10	5.91	3.95	20.31	3.95
	partly	7.86	2.96	1.98				18.16	3.34	2.23	11.49	2.23
	none	4.92	1.00	0.51				8.13	1.50	1.00	5.14	1.00
TrafficDensity	high	26.42	10.23	5.24	32.10	18.16	8.13				23.02	2.91
	average	4.87	1.56	0.77	5.91	3.34	1.50				1.85	1.33
	low	2.98	1.00	0.48	3.95	2.23	1.00				0.76	1.00
ObjectDistance	far	14.34	5.48	2.80	20.31	11.49	5.14	23.02	1.85	0.76		
	close	2.75	1.00	0.50	3.95	2.23	1.00	2.91	1.33	1.00		



Path-Specific Effects





Path-Specific Effects

Average Path-specific Effect:

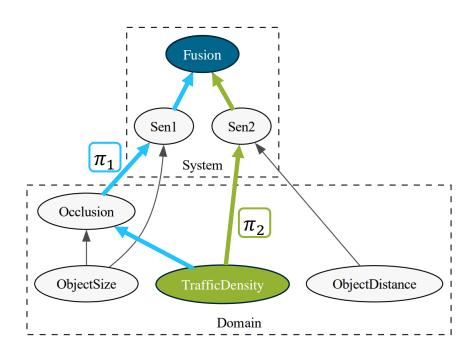
$$APE = P(Y|do_{\pi}(X = (x, x_{ref}))) - P(Y|do(X = x_{ref}))$$

Relative Path-specific Effect:

$$RPE = \frac{P(Y|do_{\pi}(X = (x, x_{ref})))}{P(Y|do(X = x_{ref}))}$$

Ratio APE and ACE:

$$\frac{APE}{ACE} = \frac{P(Y|do_{\pi}(X=(x,x_{ref}))) - P(Y|do(X=x_{ref}))}{P(Y|do(X=x)) - P(Y|do(X=x_{ref}))}$$



Path-Specific Effects

Path	Traffic Density State	APE (*10 ⁻⁴)	RPE	$\frac{APE}{ACE}$
π_1	high	0.08	1.19	0.02
	average	0.03	1.07	0.12
	low	0.00	1.00	-
π_2	high	2.86	8.13	0.82
	average	0.20	1.50	0.82
	low	0.00	1.00	-

Overview

Hierarchy of Causality

Causal Bayesian Networks

- Modelling
- Form Correlation to Causation

Causal Safety Analysis

- Fault Trees vs. Causal Bayesian Networks
- Importance Metrics

Summary

Summary

Causal Bayesian Networks enable...

- modelling relations of complex systems operating in open environments
- integration of data-driven and expert-based knowledge
- quantitative assessment of causal influences
- ⇒ evaluation of fault and failure propagation leading to harm

Challenges:

- Substantial data required to capture rare events
- Expert-based modelling of causal graphs
- Verification of causal Bayesian networks

Thank you for the attention.

Contact:

Lina Putze, M.Sc.
German Aerospace Center (DLR) e.V.
Institute of Systems Engineering for Future Mobility
lina.putze@dlr.de

