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How to derive a comprehensive
understanding of fault and failure propagation
within complex safety-critical systems?
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Hierarchy of Causality

Q Counterfactuals: ‘If X had occurred, what would have been Y?’

) Intervention: ‘If | do X, how will it change Y’

@ Association: ‘If | see X, what does it tell me about Y7’
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Causal Bayesian Networks
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* Form Correlation to Causation




Causal Bayesian Networks
Modelling
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Causal Bayesian Networks
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Causal Bayesian Networks

Correlation Causation

P(Per|Lum = low) P(Per|do(Lum = low))
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Causal Bayesian Networks

Correlation

Perception Perception Perception Perception
FN A 5.50% FN A 4.76% FN 5.27% FN 8.20%
TP A . 94.49% TP 4 | 95.24%) TP A . 94.73% TP A | 91.80%)
Luminance Luminance Luminance Luminance
low - 15.00%) low A low - low 100.00%
medium - 45.00% medium - medium - 100.00% medium -
high - | 40.00% high - 100.00 high | high -
Weather Weather Weather Weather
sun - 60.00% sun 82.50%| sun 53.33% sun - 20.00%|
rain 4 30.00% rain - 15.009% rain - 40.00% rain 40.00%)
SNOW 10.00%j sSnow - 2.50% SNOW - 6.67%)| SNOW - 40.00%)
Probability: Conditional Probability: ‘ ‘ f

P(Per = FN) = 5.50% P(Per = FN|Lum = high) = 4.76% P(Per = FN|Lum = med.) = 5.27% P(Per = FN|Lum = low) = 8.20%




Causal Bayesian Networks

Correlation Causation

Perception Perception Perception
FN A 5.50%] FN A 4,76% FN + 5.85%]
TP + 94.49% TP 4 95.24%) TP A . 94.15%)
Luminance Luminance Luminance
low - 15.00%) low A low
medium - 45.00% medium - medium -
high 1 | 40.00% high - 100.00 high - __100.00%
Weather Weather Weather
sun A 60.00%) sun 82.50% sun A 60.00%
rain A 30.00% rain 15.00%| rain 30.00%
SNOW A . 10.00%) snow - 2.50%) SNOW T 10.00%j
Probability: Conditional Probability: ‘ Interventional Probability: f

P(Per = FN) = 5.50% P(Per = FN|Lum = high) = 4.76% P(Per = FN|do(Lum = high)) = 5.85%




Causal Bayesian Networks

Causation

Perception Perception Perception Perception
FN - 5.50%] FN - 5.85%] FN - 5.10%] FN 5.75%
TP __94.49% TP 1 —94.15% TP __94.90% TP __94.25%
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low - 15.00% low 1 low low 100.00%
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\

Weather Weather Weather Weather
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rain A 30.00% rain 30.00% rain 30.00% rain 30.00%
SNow - . 10.00%) SNoOwW . 10.00% SNOW - . 10.00% SNOW - | 10.00%

Probability: Interventional Probability: f ‘ f

P(Per = FN) = 5.50% P(Per = FN|do(Lum = high)) = 5.85% P(Per = FN|do(Lum = med.)) = 5.10% = P(Per = FN|do(Lum = low)) = 4.76%




Causal Bayesian Networks

Perception
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TP 94.49%
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Correlation Causation
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Causal Safety Analysis
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Causal Safety Analysis

Fault Tree
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Causal Safety Analysis

Fault Tree Causal Bayesian Network
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Causal Safety Analysis

Fault Tree

Birnbaum Importance:

N _ OP(T = fail)

BE = dP(N; = fail)

Risk Reduction Worth:

~ P(T = fail)
~ P(T = fail|N; = =fail)
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Causal Safety Analysis

Fault Tree Causal Bayesian Network

Birnbaum Importance:
_ 0P(T = fail) BB — dP(Y)
~ 9P(N; = fail) - IP(X =x)

Risk Reduction Worth:
"""""""""""" ‘ P(T = fail) P(Y)

| . RRW = _ : RRW =
I : P(T = fail|N; = —fail) P(Y|X = xpef)
| i
: _ : Triggering BB RRW
o ____ Domamn —____________ . Condition (*107%)
FTA CBN FTA CBN
Object Size 3.78 3.12 2.80 1.50
Occlusion 3.36 4.39 1.40 1.33
Traffic Density 2.94 3.35 o 3.59

Object Distance 3.92 3.52 o0 2.31




Causal Safety Analysis
Importance Metrics

Correlation Causation
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Causal Safety Analysis

Correlation Causation

Birnbaum Importance: Average Causal Effect:
B aP(Y) ACE = P(YldO(X = X))
B aP(X = x) _P(YldO(X = xref))

Relative Causal Effect:

_ P(Y|do(X = x))
~ P(Y|do(X = Xpep))

Risk Reduction Worth: Interventional Risk Reduction Worth:

P IRRW = P)

" P(YIX = Xper) P(Y|do(X = xyef))

RRW




Causal Safety Analysis

e : (T:r(')%?jirlg‘f Stae RCE ~ RRW IRRW
i i Object Size  small 2.66
: : normal 1.00 1.14 114
i i large 0.51
' ' Occlusion largely 3.95
N partly 223 249  1.97
i E none 1.00
— ! Traffic high 9.64
Density average 164 464 464
o _._ Domain _ __________ | low 1.00
Object far 5.36
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Causal Safety Analysis

Multiple Interventions

RCE

2 _

C

P(YldO(Xl — xl)XZ

P(Y|do(Xy = x1 e, Xo

Occlusion ObjectSize

TrafficDensity

ObjectDistance

small

none partly largely large normal
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far

close

ObjectSize Occlusion TrafficDensity ObjectDistance
I small normal large Ilargely partly none high average low I far close I
9.72 7.86 4.92 |26.42 4.87 298 |1434 275
590 296 1.00 |10.23 1.56 1.00 | 5.48 1.00
4.92 1.98 0.51 5.24 0.77 0.48 2.80 0.50
9.72 590 4.92 32.10 591 3.95 |20.31 3.95
7.86 2.96 1.98 18.16 3.34 2.23 | 11.49 223
492 1.00 0.51 8.13 150 1.00 | 5.14 1.00
26.42 1023 5.24 | 3210 18.16 8.13 23.02 291
4.87 1.56 0.77 5.91 3.34 1.50 1.85 1.33
2.98 1.00 0.48 3.95 2.23 1.00 0.76 1.00
1434 548 280 |20.31 11.49 5.14 |23.02 1.85 0.76
275 100 050 | 395 223 100 | 291 133 1.00




Causal Safety Analysis
Importance Metrics

Path-Specific Effects
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Causal Safety Analysis

Path-Specific Effects

Fusion Average Path-specific Effect:
APE = P(Y|dog(X = (X, Xrer))) — P(Y|do(X = Xpe5))

Relative Path-specific Effect:

 P(Y|don(X = (%, Xrep))
R = P W 1doX = xrep))

Ratio APE and ACE:

APE _ P(Y|dox(X = (x,Xrer))) — P(Y|do(X = Xyef))
ACE ~ P(Y|do(X = x)) — P(Y|do(X = X,ef))




Causal Safety Analysis

Path-Specific Effects

: Fusion :
: | Path Traffic Density APE RPE APE
: | State (*107%) ACE
l I T, high 0.08 1.19 0.02
plpinieinty bbbl R S b ! average 0.03  1.07 012
! low 0.00 1.00 -
| | T, high 2.86 813  0.82
I | average 0.20 1.50 0.82
| low 0.00 1.00 -
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Summary

Causal Bayesian Networks enable...

= modelling relations of complex systems operating in open environments
» Integration of data-driven and expert-based knowledge

= guantitative assessment of causal influences

= evaluation of fault and failure propagation leading to harm

Challenges:
» Substantial data required to capture rare events
» Expert-based modelling of causal graphs

= Verification of causal Bayesian networks




Thank you for the attention.
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Lina Putze, M.Sc.

German Aerospace Center (DLR) e.\V.
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lina.putze@dlr.de
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