elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Leveraging a Discrete-Time-Crystal to Solve Classification Problems with a Quantum Extreme Learning Machine

Mader, Simon (2025) Leveraging a Discrete-Time-Crystal to Solve Classification Problems with a Quantum Extreme Learning Machine. Masterarbeit, Ludwig-Maximilians Universität München.

[img] PDF
1MB

Kurzfassung

This thesis explores the field of Quantum Extreme Learning Machines based on manybody localized discrete time crystals. This approach holds two advantages: Leveraging an exponentially large Hilbert states while not relying on error-corrected quantum gates. Firstly, the concept of discrete time crystals and the theoretical framework behind QELMs are presented. After some introductory results to test the potentials and limitations of unitary evolution, the method’s phase dependency is discussed to observe the melting of the discrete time crystal also in the classification accuracies. The remainder of the thesis can be split into two categories: Investigating effects on the classification accuracies when changing the quantum layer and an investigation of amendments in the readout layer. Both parts contain a comparison for thermal and discrete time crystal phase as well as reasonable comparisons with classical results. In the readout layer analysis new readout methods are presented that hold the potential of increasing the classification accuracies based on random shuffling. The work concludes with a combination of all methods and an evaluation of their combined performance. Overall, the thesis provides a comprehensive overview of the exciting field of Quantum Extreme Learning Machines, offering new insights as well as new pathways for further advancements in the field.

elib-URL des Eintrags:https://elib.dlr.de/214615/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Leveraging a Discrete-Time-Crystal to Solve Classification Problems with a Quantum Extreme Learning Machine
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Mader, Simonsimon.mader (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorRäth, ChristophChristoph.Raeth (at) dlr.deNICHT SPEZIFIZIERT
Datum:April 2025
Open Access:Ja
Seitenanzahl:84
Status:veröffentlicht
Stichwörter:Classification, Maschine Learning, Quantum Computing, Discrete Time Crystals, Extreme Learning Machines, MNIST data
Institution:Ludwig-Maximilians Universität München
Abteilung:Fakultät für Physik
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Quantencomputing-Initiative
DLR - Forschungsgebiet:QC AW - Anwendungen
DLR - Teilgebiet (Projekt, Vorhaben):QC - NeMoQC
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Materialphysik im Weltraum > Wissenschaftliche Experimente
Institut für KI-Sicherheit
Hinterlegt von: Räth, Christoph
Hinterlegt am:16 Jun 2025 10:12
Letzte Änderung:24 Jun 2025 13:49

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.