elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

A hybrid learning agent for episodic learning tasks with unknown target distance

Sefrin, Oliver und Wölk, Sabine Esther (2025) A hybrid learning agent for episodic learning tasks with unknown target distance. Quantum Machine Intelligence, 7 (1), Seite 52. Springer Nature. doi: 10.1007/s42484-025-00269-1. ISSN 2524-4906.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
994kB

Offizielle URL: https://link.springer.com/article/10.1007/s42484-025-00269-1

Kurzfassung

The "hybrid agent for quantum-accessible reinforcement learning," as defined in (Hamann and Wölk New J Phys 24:033044 2022), provides a proven quasi-quadratic speedup and is experimentally tested. However, the standard version can only be applied to episodic learning tasks with fixed episode length. In many real-world applications, the information about the necessary number of steps within an episode to reach a defined target is not available in advance and especially before reaching the target for the first time. Furthermore, in such scenarios, classical agents have the advantage of observing at which step they reach the target. How to best deal with an unknown target distance in classical and quantum reinforcement learning and whether the hybrid agent can provide an advantage in such learning scenarios is unknown so far. In this work, we introduce a hybrid agent with a stochastic episode length selection strategy to alleviate the need for knowledge about the necessary episode length. Through simulations, we test the adapted hybrid agent’s performance versus classical counterparts with and without similar episode selection strategies. Our simulations demonstrate a speedup in certain scenarios due to our developed episode length selection strategy for classical learning agents as well as an additional speedup for our resulting hybrid learning agent.

elib-URL des Eintrags:https://elib.dlr.de/213691/
Dokumentart:Zeitschriftenbeitrag
Titel:A hybrid learning agent for episodic learning tasks with unknown target distance
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Sefrin, Oliveroliver.sefrin (at) dlr.dehttps://orcid.org/0000-0002-1111-7787184797597
Wölk, Sabine EstherSabine.Woelk (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:11 April 2025
Erschienen in:Quantum Machine Intelligence
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:7
DOI:10.1007/s42484-025-00269-1
Seitenbereich:Seite 52
Verlag:Springer Nature
ISSN:2524-4906
Status:veröffentlicht
Stichwörter:Quantum reinforcement learning, Amplitude amplification, Hybrid algorithm, Navigation problem
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Quantencomputing-Initiative
DLR - Forschungsgebiet:QC SW - Software
DLR - Teilgebiet (Projekt, Vorhaben):QC - Qlearning
Standort: Ulm
Institute & Einrichtungen:Institut für Quantentechnologien > Quanteninformation und -Kommunikation
Hinterlegt von: Sefrin, Oliver
Hinterlegt am:26 Mai 2025 21:51
Letzte Änderung:26 Mai 2025 21:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.