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Abstract
The “hybrid agent for quantum-accessible reinforcement learning,” as defined in (Hamann and Wölk New J Phys 24:033044
2022), provides a proven quasi-quadratic speedup and is experimentally tested. However, the standard version can only
be applied to episodic learning tasks with fixed episode length. In many real-world applications, the information about the
necessary number of steps within an episode to reach a defined target is not available in advance and especially before reaching
the target for the first time. Furthermore, in such scenarios, classical agents have the advantage of observing at which step
they reach the target. How to best deal with an unknown target distance in classical and quantum reinforcement learning and
whether the hybrid agent can provide an advantage in such learning scenarios is unknown so far. In this work, we introduce
a hybrid agent with a stochastic episode length selection strategy to alleviate the need for knowledge about the necessary
episode length. Through simulations, we test the adapted hybrid agent’s performance versus classical counterparts with and
without similar episode selection strategies. Our simulations demonstrate a speedup in certain scenarios due to our developed
episode length selection strategy for classical learning agents as well as an additional speedup for our resulting hybrid learning
agent.

Keywords Quantum reinforcement learning · Amplitude amplification · Hybrid algorithm · Navigation problem

1 Introduction

Reinforcement learning (RL), the machine learning frame-
work related to learning through interaction and experience,
has shown tremendous success in recent years, surpassing
human capability in Atari games (Mnih et al. 2015) or the
board game Go (Silver et al. 2017), among many others.
One of the main reasons for its success is the ever-growing
computational power of classical hardware, which allows the
implementation of deep learning techniques in RL such as
deep Q-learning (DQN) (Mnih et al. 2015).

However, many problems and problem classes still prove
to be difficult even to modern supercomputers due to their
unfavorable scaling with the problem size. Here, quantum
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computation (Nielsen and Chuang 2010) with the prospect
of polynomial or even exponential advantages in problem
complexity has excited researchers across many disciplines
and even created new research fields. Among the latter,
quantum machine learning (QML) (Biamonte et al. 2017)
has emerged with the idea of combining the computa-
tional benefits of quantum computation with the proven
effectiveness of machine learning approaches. Given the
current state of quantum computing hardware in the so-
called noisy intermediate-scale quantum (NISQ) era (Preskill
2018), research inQMLhas focused on algorithms of low cir-
cuit depth and width, such as variational algorithms (Cerezo
et al. 2021), or even so-called quantum-inspired methods
such as tensor networks (Biamonte andBergholm2017;Orús
2014; Bridgeman and Chubb 2017; Huggins et al. 2019).
Whereas these methods have the benefit of being applicable
on current quantum devices (or even on classical machines in
the case of quantum-inspired ansätze), their actual advantage
compared to classical methods remains unclear (Schuld and
Killoran 2022; Cerezo et al. 2024).

An example for a QML algorithm with a provable
speedup, which is, however, not NISQ-ready, is the so-called

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-025-00269-1&domain=pdf


   52 Page 2 of 17 Quantum Machine Intelligence             (2025) 7:52 

“hybrid agent for quantum-accessible reinforcement learn-
ing” (Hamann andWölk 2022). Here, a learning agent learns
to solve a given problem by interacting via a set of actions
with a problem environment. Based on amplitude amplifica-
tion (Grover 1997; Brassard et al. 2002), a quasi-quadratic
speedup in terms of the sample complexity compared to
corresponding classical agents was proven for a class of
RL environments called deterministic and strictly episodic
(DSE) environments. These environments are reset to an ini-
tial state after a fixed number of interaction steps defining
the episode length. Further, choosing an action in the current
state yields one subsequent state with certainty. The Grid-
world or maze scenario with a fixed episode length is one
example of a DSE environment. The Gridworld with and
without fixed episode length will serve as a toy model in this
work.

Whilemany learning scenarios are indeed episodic, a large
subset of these is not strictly episodic. That is, episodes
may differ in length because, e.g., their end is coupled to
reaching some rewarded target state such that the episode
length depends on the brevity of the solution found. The
Gridworld environment without a fixed episode length is a
standard example for such a learning scenario and a learning
model with many real world applications (see, e.g., Häm-
merle et al. (2024)). Classical reinforcement learning agents
usually solve the problem of an unknown target distance by
extending an episode until the target is found. Practically, an
absolute maximal length for an episode based, e.g., on prior
knowledge about the problem size or the available computa-
tional time is set to avoid a never-ending algorithm. How to
best deal with unknown target distances is still under current
investigation (see, e.g., Mandal et al. (2023)).

For the hybrid agent (Hamann andWölk 2022), a practical
application strategy in learning scenarios with an unknown
target distance has not been formulated yet. In general, the
hybrid agent can easily be applied to a deterministic and non-
strictly episodic environment by choosing a fixed episode
length L after which the episode ends, whether the target
was reached or not. Yet, the chosen episode length L has
crucial influence on the hardness of the learning problem
and the expected total number of interaction steps to learn to
solve the problem, both in the classical and the hybrid case.
Figure1 illustrates this influence emphasizing that a good
episode length selection strategy can accelerate the learn-
ing both for classical and quantum learning agents. Here, we
show the expected number of interaction steps, summed over
all episodes, until the defined goal was reached for the first
time for a classical and a hybrid agent depending on the fixed
episode length L for a given maze example. On the one hand,
choosing L small renders the problem hard or even unsolv-

Fig. 1 Comparison of the expected number of total interaction steps
performed before finding a defined target for the first time depending
on the episode length L. The results stem from a simulation with a
Gridworld of base size 7×7 and an outerwall distance of 16 (see Section
3.2 for information about the Gridworld layouts)

able for an untrained agent. On the other hand, choosing a
large L can lead to a high probability pinit(L) to achieve the
defined target within one episode even for an untrained agent.
This reduces the number of necessary episodes but instead
requires a larger number of interaction steps per episode. For
small episode lengths, corresponding to small success prob-
abilities pinit(L), the hybrid agent offers a quasi-quadratic
speedup compared to the classical agent. For intermediate
episode lengths, the hybrid agent’s quantum overhead results
in a slightly worse performance, before it finally converges
to the classical agent’s behavior and thus to its performance
in the limit of large episode lengths and pinit(L) → 1. (For
a detailed discussion, see Appendix C.) The choice of a suit-
able episode length is further complicated by the fact that
upon not being rewarded, one does not gather any informa-
tion about whether the chosen episode length is sufficient or
not.

In summary, the choice of L can have a larger influence
on the necessary effort to reach the goal than whether we
use a hybrid or a purely classical agent. If enough informa-
tion about the learning problem were available, an optimal
episode length could be inferred. However, this is usually not
the case. Furthermore, a classical learning agent can observe
when it reaches the target and then end the episode. In quan-
tum mechanics, observation usually suppresses the effect of
interference, which is necessary to gain a quantum advan-
tage. Thus, a predefined episode length is necessary for the
hybrid agent. Whether the hybrid agent can outperform clas-
sical agents which use the advantage of a flexible episode
length and if so, in which scenarios, has not been investi-
gated so far.
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In this work, we introduce a hybrid agent with a flexible
episode length selection strategy for the case of a deter-
ministic and episodic environment with an unknown target
distance. More precisely, we introduce a probabilistic condi-
tionwhich doubles the current episode length when triggered
until the target is found for the first time. Reaching the target
for the first time is especially challenging while extremely
important. Indeed, after having reached the target, the length
of the found sequence of actions is obviously sufficient and
serves as an upper bound for the optimal episode length. The
necessity of reaching the target for the first time efficiently
is further underlined by the fact that, at the start of learning,
the RL algorithm’s success probabilities are usually the low-
est. This indicates that the search for reaching the target for
the first time in such a sparse reward environment takes up a
significant amount of the total learning time.

By interweaving our probabilistic episode length adapta-
tion with the underlying amplitude amplification algorithm,
we manage to solve learning problems without fixed episode
length with no additional hyperparameters introduced. We
test the extended hybrid agent versus a corresponding clas-
sical agent with the same episode length selection strategy
and a classical agent with flexible episode length. This lat-
ter agent has no fixed episode length and ends an episode
only when finding the target. Our research objective is to
find a good episode length selection strategy by comparing
the performance of different hybrid and classical agents and
to investigate whether the resulting hybrid learning agent
provides any benefits compared to the considered classical
agents.

The article is structured as follows: in Section 2, the hybrid
agent is introduced in more detail as well as placed in the
broader context of quantum reinforcement learning (QRL).
Next, we present the adapted algorithm and explain the sim-
ulation methodology in Section 3. In Section 4, we define a
new figure of merit tailored to the new problem setting and
motivate it before presenting the results. Finally, we provide
a conclusion and an outlook in Section 5.

2 Background

2.1 Reinforcement learning

In RL (Sutton and Barto 2018), an agent interacts with an
environment in a sequence of discrete time steps t ∈ N0.
The interaction starts with an initial percept, or state, s0 ∈
S from the set of possible percepts S, which is given to
the agent by the environment. At each time step t ≥ 1, the
agent selects an action at from the set of possible actions

A based on the previous percept st−1. This action selection
is governed by the agent’s current policy π(a|s), which is a
probability distribution over the set of actions conditional to
the current percept. Subsequently, the environment responds
with the next percept st as well as a real-valued reward rt .
Generally, the response of the environment is probabilistic,
with probability distribution

τ(st , rt |st−1, at ). (1)

Since the probability function only depends on the previous
interaction step, it fulfills the Markov property. Hence, this
type of RL interaction is a so-called finite Markov decision
process (MDP).

In deterministic environments such as Gridworld, Eq. 1 is
a trivial probability distribution in the sense that it returns
unity for one specific combination of percept and reward
value (st , rt ) and zero for any other combination. To simplify
the notation in Algorithm 1, we can thus introduce functions
S : S ×A → S and R : S ×A → R which return the next,
deterministic percept st and reward rt , respectively:

rt = R(st−1, at ) (2)

st = S(st−1, at ) (3)

The agent’s task is to adapt its policy such as to maximize
the expectation value of the cumulative reward

Eπ

[ ∞∑
t=1

γ t rt

]
, (4)

where the subscript π indicates the expectation value upon
following policyπ . The coefficient γ ∈ (0, 1] is the so-called
discount value, which adjusts a trade-off between current and
future rewards.

2.2 Hybrid learning agent

Our approach builds on the QRL algorithm coined “hybrid
agent for quantum-accessible reinforcement learning”
(Hamann and Wölk 2022). This algorithm is embedded in
a quantum communication scenario where the RL agent and
theDSE environment interact by exchanging quantum states.
That is, each action from the set of allowed actions a ∈ A
is mapped to a quantum state |a〉A and the set of states
{ |a〉 | a ∈ A } forms an orthonormal basis. Similarly, the
set of percepts { s | s ∈ S } is mapped to orthonormal states
{|s〉S}, and the set of rewards { r | r ∈ R } to orthonor-
mal states {|r〉R}. Here, the indices A, S, and R indicate the
Hilbert spaces for the quantized actions HA, percepts HS ,
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and rewards HR , respectively. We map the initial percept s0
to

|�sinit〉S = |s0, ∅, . . . , ∅〉S ∈ H⊗(L+1)
S ,

with a single-percept default state |∅〉S ∈ HS , as the ini-
tial quantum state for the sequence of percepts and use
|�0〉R ∈ H⊗L

R as the initial quantum state for the sequence
of rewards. Then, in the quantum communication scenario,
the response of the environment to the sequence of actions
�a = (a1, . . . , aL) within one episode of L interaction steps
can be modeled as a unitary Uenv acting on the multipartite
state |ψ〉 = |�a〉A|�sinit〉S|�0〉R such that

Uenv|ψ〉 = |�a〉A|�s〉S|�r〉R .

In our RL scenario, we assume a single binary reward r is
given at the end of each episode to simplify the learning sce-
nario, such that the reward Hilbert space is two-dimensional.

With αk
1 queries of the environment unitary Uenv, it was

shown that an effective phase-kickback oracle

OE |�a〉A|�sinit〉S|−〉R = (−1)r(�a)|�a〉A|�sinit〉S|−〉R (5)

can be realized (Dunjko et al. 2016) when initializing the
reward register in the state |−〉R = 1√

2
(|0〉R − |1〉R). Based

on this oracle, a hybrid quantum classical learning agent has
been defined in Saggio et al. 2021 and Hamann and Wölk
2022.

This hybrid learning agent consists of two parts: a quan-
tum part and a classical part. In the quantum part of the
hybrid learning agent (Hamann and Wölk 2022), the agent
prepares instead of a single sequence of actions |�a〉 a superpo-
sition of possible action sequences

∑
�a c�a |�a〉 where |c�a |2 is

equal to the probability that the agent chooses the action
sequence �a according to its current policy π . By interacting
with the environment, the agent applies a Grover operator on∑

�a c�a |�a〉 based on the oracle OE . With this Grover operator,
the amplitudes { c�a | r(�a) > 0} of rewarded action sequences
can be amplified which enables a quadratic speedup in query
complexity (Grover 1997; Brassard et al. 2002). Following
the quantum part of the algorithm, the classical part of the
agent starts by measuring the action register. Consecutively,
one classical episode with the measured action sequence �a

1 αk = 1 for basic environments with action-independent percepts s
and αk = 2 for environments in which intermediate percepts s are
action-dependent (Hamann and Wölk 2022).

is performed to determine the corresponding sequence of
percepts �s (�a) and the corresponding reward r (�a) for the
measured sequence of actions. This is necessary to infer
the actual sequence of percepts encountered by the agent
as well as the reward information, since this information
was uncomputed in the amplitude amplification procedure
to allow for interference. Finally, the policy π of the agent
can be updated according to some chosen update rules such
as Q-learning (Watkins and Dayan 1992) or projective sim-
ulation (Briegel and De las Cuevas 2012). Then, the agent
proceeds by starting the next quantum part until a predefined
ending condition (Hamann and Wölk 2022) is met.

The speedup of the hybrid learning agent has been veri-
fied in a proof-of-principle experiment using a nanophotonic
processor (Saggio et al. 2021). Likewise, a speedup in
decision-making using a quantum walk search approach has
been formulated (Paparo et al. 2014) and experimentally ver-
ified (Sriarunothai et al. 2018) for a variant of the projective
simulation algorithm called “Reflecting Projective Simula-
tion” (Briegel and De las Cuevas 2012). A first extension
of the standard RL scenario for the hybrid learning agent
concerning changing oracles was investigated in Hamann
et al. (2021).

2.3 Related work

QRL (Dong et al. 2008), just as quantum machine learning,
can be interpreted inmany differentways, according towhich
we aim to structure this overview of related work.

In the broader sense, QRL can be understood as the appli-
cation of classical RL (Sutton and Barto 2018) to problems
related to quantum computing or quantum technologies. This
comprises the usage of RL for quantum circuit optimiza-
tion (Ostaszewski et al. 2021; Lockwood 2022; Fösel et al.
2021; Ruiz et al. 2024; Rapp et al. 2025), quantum con-
trol (Sivak et al. 2022; Fösel et al. 2018; Bukov et al. 2018;
Guatto et al. 2024; Yu et al. 2025), or quantum error correc-
tion (Nautrup et al. 2019; Sivak et al. 2023).

Anotherwell-established category isQRLwithparametrized
quantum circuits (PQCs) (Jerbi et al. 2021). Here, PQCs
encode the RL agent’s current policy (in policy gradi-
ent algorithms such as PPO (Schulman et al. 2017) or
DPG/DDPG (Silver et al. 2014; Lillicrap et al. 2019)) or
encode an approximate action-value function such as in
DQN (Mnih et al. 2015). In a hybrid approach, the PQC’s
parameters are updated using a classical feedback loop.
Using simulated or real quantum hardware, these methods
have been applied to standard Gymnasium (Kwiatkowski
et al. 2024) (previously OpenAI Gym (Brockman et al.
2016)) environments such as Cart Pole, Frozen Lake, or Atari
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Games (Jerbi et al. 2021; Skolik et al. 2022; Chen et al.
2020; Lockwood and Si 2020, 2021) as well as maze prob-
lems (Hohenfeld et al. 2024; Chen et al. 2024).

More recent approaches aim at speeding up the learning
process using quantum sub-routines (Ganguly et al. 2023;
Zhong et al. 2024), finding better policies with a combined
approach of using quantum phase estimation (Kitaev 1995)
and Grover’s search algorithm (Grover 1997; Wiedemann
et al. 2023), or combining quantum computing with the pol-
icy iteration algorithm (Cherrat et al. 2023). In Li et al.
(2020), amplitude amplification is used to increase the chance
of rewarded actions. Here, the kickback phases of the oracle
and diffusion operator are not fixed to π , but instead depend
on a so-called utility function.

First investigations of possible implementations of QRL
on superconducting devices are presented in Lamata (2017).
A different approach to the maze or Gridworld problem is
shown inDalla Pozza et al. (2022). Here, a classical RL agent
is trained to modify the maze’s walls such as to maximize the
escape probability with a quantum random walk in a given
time interval.

3 Methods

3.1 Algorithm

Our hybrid learning agent uses, similar to Hamann andWölk
(2022), the variation ofGrover’s algorithmwhere the number
of solutions and thus the optimal number kopt of amplitude
amplification (AA) iterations is unknown (Boyer et al. 1998).
This variation of the Grover algorithm appears also slightly
varied asQSearch in Brassard et al. (2002) and is necessary
due to the fact that in a RL problem, the success probability
of being rewarded is typically unknown.

The main ingredient of what we call from here on Boyer’s
algorithm is a flexible interval [0,m) with m ∈ R

+, from
which the integer number of AA iterations k is uniformly
sampled. Starting from m = 1, the interval upper bound is
multiplied by a constant factor λ ∈ (1, 2) each time that the
measurement yields no success. This parameter λ, which is
set to 5

4 in all simulations in this work, is the only hyper-
parameter of our algorithm. Once the parameter m reaches√
1/pmin, with pmin being a lower bound for the current suc-

cess probability, it is not increased further. At this point,
Boyer’s algorithm reaches its so-called critical stage, at
which the success probability in each AA round is known to
be at least 1/4, supposed that a rewarded item exists (Boyer
et al. 1998).

Our learning algorithm (seeAlgorithm 1) is strongly inter-
twined with this notion of two stages in Boyer’s algorithm.
The algorithm starts with a minimal episode length, which
is L = 1 in the most uninformed case. We set the lower
bound estimate pmin = |A|−L , assuming a uniform initial
policy and at least one rewarded action sequence at the current
episode length. In each round of the main loop, the episode
length has a chance to be doubled, with probability

ϕL(m) ≡ log(m)

log
(√|A|L

) = 2 log(m)

L log(|A|) . (6)

This probability is chosen such that it reaches unity exactly
when Boyer’s algorithm reaches its critical stage. If the
episode length doubling is triggered, m is reset to one.

This probabilistic episode length selection strategy serves
several purposes. First, starting from low episode length val-
ues is resource-friendly, since the Hilbert space of action
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sequences, H⊗L
A , scales exponentially with the episode

length L. It is also more efficient with regard to the total
number of actions played before reaching the target, which
will be our main metric (see Section 4.1). Second, the expo-
nential increase of L enables the hybrid algorithm to reach
large episode lengths reasonably quickly, which might be
necessary in scenarios with distant targets. Finally, coupling
the doubling probability to the parameter m ensures that the
algorithm does not spend too many tries with an episode
length which has no, or vanishing, success chance.

As mentioned in Section 2.2, the hybrid agent can be
paired with the policy updating mechanism of many clas-
sical RL algorithms. Since in this work, we focus solely on
finding the first reward, the subsequent updating of the policy
is not of relevance. Therefore, we do not include the formu-
lation of a specific policy update rule but instead just require
a given (initial) policy π in Algorithm 1.

3.2 Simulation

To systematically test our hybrid method, we investigate
the performance of our hybrid learning agent in a two-
dimensionalGridworld scenario,which is a standard problem
for classical RL. The standard Gridworld (Sutton and Barto
2018) consists of a grid of cells, and the goal is to find
the shortest path from a start cell to a given target cell.
In each cell, a RL agent may choose one action of the set
A ∈ {up, down, left, right} changing the position/cell of the
RL agent accordingly. Usually, the grid is surrounded by
walls, and also walls between arbitrary cells are possible.
Standing next to a wall and choosing an action towards it
yields no change in the cell state. The first action to reach
the target cell in each episode yields a reward of one; every
other action is not rewarded.

TheGridworld layouts in our simulations have a quadratic
base area with one start and one target cell placed in diag-
onally opposing corners. Further, the quadratic base area is
surrounded by outer walls. We decide to have no inner walls,
since their existence is not crucial for our investigations. To
generate a variety of shapes for the function pinit(L) onwhich
the performance of our strategies depends, we vary this basic
Gridworld layout in two ways, as illustrated in Fig. 2:

1. We vary the side lengths of the quadratic base area, which
we denote b. This obviously has an effect on theminimal
episode length Lmin necessary to reach the target, Lmin =
2(b − 1). Additionally, it influences the initial success
probability for the minimal episode length (assuming a

Fig. 2 Example of a Gridworld layout used in the simulations. The blue
robot and the green flag symbols indicate the start and target position,
respectively. The inner square of thick lines is the so-called base area,
here with a size of 4 × 4 cells. The Gridworld has outer walls which
prohibit the RL agent from moving away further. The example here
shows an outer wall distance of 2

uniform policy initialization): pinit(Lmin) = (2(b−1)
b−1

) ·
4−2(b−1), with

(2(b−1)
b−1

)
being the number of distinct paths

of length 2(b − 1) = Lmin that reach the target.
2. We vary the distance of the outer walls around the Grid-

world’s base area. An outer wall distance, or dwall, of
zero indicates that the walls are directly surrounding the
base area. Having dwall = n would result in a ring of
cells of thickness n between the base area and the outer
walls. This has no effect on pinit(Lmin). However, more
distanced outerwalls increase the general state space and,
in particular, add cells to the state space which are fur-
ther from the target cell than any cell in the Gridworld’s
base area. Therefore, it effectively decreases how quickly
pinit(L) rises with increasing episode length L .

In our simulations, we vary the Gridworld’s base area
from size 5 × 5 (with pinit(Lmin) = 1.1 × 10−3) to 9 × 9
(pinit(Lmin) = 2.9 × 10−6). For the outer wall distance,
we test the values 0, 4, 8, 16, 32, and 64. The scenario of
no outer walls, which is equal to the limit of an infinite
outer wall distance, is not computationally feasible to real-
ize within our simulation framework (for an explanation and
more implementation details, see Appendix B). The depen-
dency of pinit(L) for a selection of the different Gridworld
layouts is shown in Fig. 3.

In this paper, we concentrate on finding the first reward,
since the main speedup our hybrid agent achieves compared
to classical agents happens during this stage. In addition,
from this point on, the learning process and the achiev-
able quantum speedup depend crucially on the chosen policy
update mechanism and chosen learning parameters, making
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Fig. 3 Dependency of the agent’s initial success probability on its episode length L for different Gridworld layouts (varied by their base area size
and outer wall distance). The probability values are generated using a Monte Carlo simulation, see Appendix B for more details

general statements on the comparison of hybrid and classical
learning agents difficult. Since we focus on the scenario of
finding the first reward, we assume an untrained agent with
an initial uniform policy π(a) = 1

|A| ∀ a ∈ A. Given that in
the Gridworld scenario, intermediate percepts of an episode
depend on the actions played within that episode, the hybrid
algorithm requires αk = 2 queries of the environment uni-
taryUenv per iteration of the Grover operator G (cf. footnote
1 on 4). Every strategy is tested on each Gridworld layout for
N = 10000 runs.

3.3 Classical strategies

We compare the extended hybrid algorithm to two classical
strategies, which we present and motivate in the following.

A direct classical equivalent to the extended hybrid algo-
rithm can be devised by employing the same probabilistic
episode length doubling strategy. Here, the parameter m of
Algorithm 1 loses its twofold function and only defines the
respective probability to double the episode length L. This
episode length then defines the number of steps the agent
may take until it is reset to its starting position. Again, we set
the hyperparameter λ = 5

4 for this algorithm. From here on,
we denote this the probabilistic classical strategy.

The second classical strategy arises from the idea that only
in the hybrid algorithm an episode length needs to be given.
Classical algorithms, however, are not restricted in such a
way. Practically, not setting an episode length implies an
uninterrupted random walk governed by the agent’s current
policy until the reward state is reached. We denote this the
unrestricted classical strategy.

4 Results

Before presenting the results of our simulation, we discuss
the novel figure of merit and its implications. This figure
of merit is different from the original hybrid learning agent
introduced in Hamann and Wölk (2022).

4.1 Figure of merit

The quadratic speedup that was proven theoretically and
experimentally in the initial works on the hybrid learning
agent (Hamann and Wölk 2022; Saggio et al. 2021) is based
on the number of queries of the environment unitary Uenv.
This is equivalent to the number of episodes played in a clas-
sical context.

This figure of merit is misleading in this scenario, as
we now argue. Unlike in Hamann and Wölk (2022), we no
longer operate with a fixed episode length in our RL sce-
nario. Given that the episode length has a crucial impact on
the agent’s initial success probability (cf. Fig. 3), omitting an
episode’s length from the figure of merit is unreasonable in
this scenario. Additionally, due to the monotonously increas-
ing success probability, in the limit of an infinite episode
length, one singular episode is always sufficient to find the
target.

Hence, we define the total number of actions taken, Nact,
instead of the number of RL episodes as the new figure of
merit in our scenario. With a current episode length of L , this
metric is counted as follows:
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• In the quantum part of the hybrid learning agent, k iter-
ations of amplitude amplification add 2 · k · L steps to
the count. Here, the factor two stems from the fact that
we require αk = 2 applications of the environment uni-
tary Uenv per iteration of amplitude amplification.

• In the classical part of the hybrid learning agent and for
a purely classical agent, an unsuccessful episode adds L
steps to the count. If the agent reaches the target, only
the actual number of steps i ≤ L necessary to reach the
target is counted.

We derive theoretical expressions for the expected per-
formance of the probabilistic hybrid and the unrestricted
classical strategy in Appendix D.

4.2 Simulation results

A full overview of the results for each combination of strat-
egy and Gridworld configuration is given in Table 1 of
Appendix A. Figure4 visualizes the results on a subset of
Gridworld configurations.

According to the two ways by which we varied the basic
Gridworld layout, base area size b and outer wall distance
dwall, two effects can be observed in the data:

(i) The necessary number of actions to reach the target
increases with increasing base area size b as expected.
This observation holds for all strategies and outer wall
distance values.

(ii) The influence of the outer wall distance parameter, dwall,
differs for the different strategies. Thus, the question
whether the hybrid agent or one of the classical agents
is preferable depends on the outer wall distance.

At dwall = 0 and dwall = 4, the unrestricted classical agent
requires on average the least number of actions to reach the
target across all base area sizes. Both probabilistic strategies
require approximately 1.2 to 5 times the number of actions,
with the hybrid version requiring the most steps at larger
base area sizes. For larger values of dwall, both probabilistic
strategies appear to stabilize in terms of Nact, which can be
seen from the flat curves in Fig. 4 for outer wall distances of
8 and higher. Between the two, the hybrid strategy consis-
tently has lower Nact, with the ratio of fewer actions ranging
from 27 to 42% (for base area 9× 9 with dwall = 8 and base
area 5× 5 and dwall = 64, respectively). For the unrestricted
classical strategy, however, the number of actions increases
continuously with increasing dwall. At dwall = 8, it is still
more efficient than the hybrid agent for the two largest base
area sizes, 8× 8 and 9× 9. Already for dwall = 16, however,
it requires more actions than either probabilistic strategy for
any base area size. For the largest tested Gridworld configu-
ration (base area size 9× 9 and dwall = 64), the unrestricted
classical strategy trails the probabilistic hybrid one by more
than an order of magnitude.

Another interesting quantity is the so-called terminal
episode length. In the case of the unrestricted classical strat-
egy which stops as soon as the target is reached, this is

Fig. 4 Results of the tested hybrid and classical strategies for the first reward search problem. Gridworld layouts are varied by their base area size
as well as their outer wall distance. Datapoints show the mean over N = 10000 runs per configuration, see Table 1 for the respective standard errors
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Fig. 5 Relative frequency of terminal episode lengths for the proba-
bilistic hybrid and classical algorithms. The blue curve represents the
initial success probability for the given Gridworld layout depending on
the episode length. The results shown stem from the Gridworld con-
figuration with a base area size of 9 × 9 and outer wall distance of
16

equivalent to the length of the solution. In the case of the
probabilistic strategies, this quantity refers to the episode
length currently used by the algorithm when the target was
first reached. Due to the episode length doubling nature of
the probabilistic strategies, this is always a power of two.
In this case, the terminal episode length provides an upper
bound to the length of the solution. A visual comparison of
the relative frequencies with which either probabilistic strat-
egy terminates at a specific episode length is given in Fig. 5.

The probabilistic hybrid strategy terminates on average at
lower episode lengths than the classical probabilistic strategy.
For the Gridworld configuration used for Fig. 5 (base area
9 × 9 and dwall = 16), the most frequent terminal episode

Fig. 6 Relative frequency of terminal episode lengths for the proba-
bilistic hybrid algorithm and expected number of total interaction steps
for the fixed-length hybrid algorithm (cf. Fig. 1). The Gridworld con-
figuration used here has a base area size of 7 × 7 and an outer wall
distance of 16

lengths for the hybrid strategy are 32 and 64, whereas the
probabilistic classical strategy terminates most frequently at
128 and 256. In Fig. 6, we compare the relative frequency of
terminal episode lengths of the probabilistic hybrid algorithm
with the total number of interaction steps that the original
hybrid learning agent of Hamann and Wölk (2022) would
require with a fixed episode length (cf. Fig. 1).

For the given Gridworld configuration, using the hybrid
learning agent with fixed episode length L = 34 would be
optimal in terms of the total interaction steps. As the dis-
tribution of terminal episode lengths in Fig. 6 shows, our
probabilistic hybrid algorithm terminates most frequently at
the nearest (L = 25 = 32) and second most frequently at the
second nearest (L = 26 = 64) episode length. This suggests
that the in-built episode length doubling mechanism is tuned
well enough that the probabilistic hybrid algorithm reaches
efficient episode lengths and at the same time does not mas-
sively overshoot to unnecessary large episode lengths.

Figure 7 shows the influence of the outer wall distance
parameter on the terminal episode length. For the proba-
bilistic hybrid strategy (Fig. 7a), increasing dwall results in
a slight shift of relative frequencies towards larger terminal
episode lengths. Namely, the most frequent terminal episode
length shifts from 32 for dwall = 0 to 64 for dwall = 16 and
dwall = 64. For the unrestricted classical strategy (Fig. 7b),
the episode length shifts by several orders of magnitude for
larger outerwall distances.As the figure shows, for dwall = 0,
it terminates most frequently at episode lengths between 28

and 29, whereas for dwall = 16, this interval ranges from
212 to 213 and for dwall = 64 from 215 to 216. The on
average much shorter terminal episode lengths of the proba-
bilistic hybrid strategy compared to the unrestricted classical
strategy directly imply much shorter solutions for the first
rewarded action sequence.

5 Conclusion

In this work, we have introduced a hybrid agent for quantum-
accessible reinforcement learning with a flexible episode
length selection strategy. As we have argued, this extension
is crucial for finding the first reward in RL scenarios which
are equivalent to a Gridworld with no information about the
length of the shortest rewarded path. Achieving this goal effi-
ciently enables the swift continuation of the RL process with
the newfound knowledge of a sufficient episode length.

The simulation results for different Gridworld configura-
tions suggest that our proposed hybrid agent can (i) find the
first reward faster and (ii) can find shorter solutions than the
considered classical agents in many configurations. Namely,
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Fig. 7 Comparison of the terminal episode lengths between the probabilistic hybrid and the unrestricted classical strategy. The results shown are
for the configuration with a base area size of 9 × 9

pairing the hybrid agent with the probabilistic episode length
selection strategy appears beneficial compared to both the
unrestricted and the probabilistic classical strategy in con-
figurations with large state spaces (i.e., larger values of dwall
in our simulations) and with low initial success probabilities
(i.e., larger base area sizes b in our simulations). Thus, even
though the quadratic scaling advantage does not apply any
more for this metric and scenario, the hybrid strategy outper-
forms its classical counterparts especially at harder problems.

In general, imposing an episode length results in better
performance for large state spaces also in the comparison
between the classical agents. Our intuition behind this is
that in large state spaces, a random walk might on average
increase the distance to the target compared to the starting
position such that a reset to the start is beneficial inmany situ-
ations. With regard to how quickly our probabilistic strategy
moves to larger episode lengths, our analysis reveals that the
doubling of the episode length happens slow enough such
that (i) the maximal episode length stays in a reasonable
regime and that (ii) noticeable speedups through amplitude
amplification can be achieved (cf. Fig. 5).

Finally, we address a few design questions on the cho-
sen Gridworld layout, especially regarding a few omissions
of further Gridworld variations. First, one could conceive
of a scenario where moving into some cells, or even all
walls, stops the episode immediately without a reward. If we
have a move sequence �a which moves into such a terminal,
but non-rewarded cell, concatenating any additional move
sequence �a′ will not turn the full sequence into a rewarded
one. Thus, with a uniform initial policy, the initial success
probability does not converge to 1 in the limit of infinite
episode lengths. Here, it can be assumed that the probabilis-
tic hybrid strategy is beneficial as this strategy works well

with a slowly increasing success probability and low success
probabilities in general. Second, one could omit the outer
walls altogether, yielding an infinite state space. As men-
tioned in Section 3.2, simulating this scenario is not feasible.
However, we can extrapolate the trend for increasing outer
wall distances, since having noouterwalls is equal to the limit
dwall → ∞. Here, we can see that the probabilistic strate-
gies prove to be advantageous, with the hybrid version still
requiring less steps than the classical one. Third and last, one
could investigate higher-dimensional Gridworld layouts than
the two-dimensional scenario shown here. For randomwalks
in hypergrids of dimension D ≥ 3, however, the probability
to reach any point with a random walk in the limit of infinite
steps does not converge to unity (Pólya 1921). Therefore, an
infinite random walk in the fashion of the unrestricted clas-
sical strategy is certainly a bad choice. Given that, besides
the asymptotic limit, the scenario is not fundamentally dif-
ferent, the hybrid probabilistic strategy can again be assumed
to be the most efficient of the three, supposed that the initial
success probability is low. With these generalizations of our
basic Gridworld toy model, we expect our hybrid agent to be
applicable in an even wider range of real-world problems.

There are two research questions that should be inves-
tigated further: (i) Is the coincidence of the most probable
terminal episode length with the optimal episode length pure
luck or a reliable property of our algorithm? (ii) In which
ways does the on average shorter terminal episode length of
our probabilistic hybrid agent compared to the probabilistic
classical agent influence the further learning? In addition, the
successful extension of the hybrid learning agent to episodic
learning tasks with unknown target distance now enables
the application to many more realistic learning tasks, which
should be investigated in the future.
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Appendix A. Table of full results

Table 1 Results of the tested hybrid and classical strategies for the first reward search problem

Outer wall distance Strategy Base area size
5 × 5 6 × 6 7 × 7 8 × 8 9 × 9

Probabilistic hybrid 300 (2) 515 (3) 887 (5) 1400 (9) 2071 (14)

0 Probabilistic classical 310 (2) 534 (3) 833 (5) 1208 (7) 1724 (9)

Unrestricted classical 106 (1) 170 (2) 246 (2) 347 (3) 472 (4)

Probabilistic hybrid 466 (3) 806 (4) 1350 (7) 2087 (11) 2981 (17)

4 Probabilistic classical 720 (6) 1206 (9) 1809 (12) 2541 (16) 3426 (21)

Unrestricted classical 397 (4) 503 (5) 624 (6) 749 (7) 909 (8)

Probabilistic hybrid 479 (3) 797 (5) 1309 (8) 2106 (14) 3048 (18)

8 Probabilistic classical 793 (7) 1333 (11) 2096 (16) 3083 (23) 4085 (29)

Unrestricted classical 975 (10) 1165 (11) 1343 (13) 1539 (14) 1758 (16)

Probabilistic hybrid 483 (3) 826 (4) 1357 (7) 1986 (11) 2934 (17)

16 Probabilistic classical 795 (7) 1374 (12) 2157 (18) 3115 (24) 4442 (34)

Unrestricted classical 2950 (34) 3375 (37) 3754 (41) 4095 (43) 4406 (45)

Probabilistic hybrid 468 (3) 816 (5) 1391 (8) 2047 (12) 3090 (18)

32 Probabilistic classical 803 (7) 1364 (12) 2250 (18) 3291 (26) 4426 (34)

Unrestricted classical 10,357 (135) 11,219 (139) 12,208 (151) 13,152 (154) 13,872 (157)

Probabilistic hybrid 499 (3) 847 (5) 1355 (7) 2173 (12) 3025 (18)

64 Probabilistic classical 802 (7) 1385 (12) 2218 (18) 3147 (25) 4442 (34)

Unrestricted classical 37,514 (543) 40,668 (555) 43,315 (578) 46,448 (606) 47,963 (615)

Numbers represent average Nact (with the respective standard error in parentheses) for the different Gridworld layouts, based on N = 10000 runs
per configuration. For each configuration, the lowest value of Nact is printed in boldface
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Appendix B. Simulation details

Given that amplitude amplification (AA) is not a NISQ-
compatible algorithm, we have to fall back to simulating its
effect instead of doing a full quantum circuit execution on
simulated or real hardware.

To do so, we infer the initial success probability pinit(L)

for any episode length L which might occur in the hybrid
strategy beforehand. Having knowledge of this probability,
we can subsequently compute the amplified success prob-
ability using the well-known AA equation (Brassard et al.
2002)

pAA(L, k) = sin2
(
[2k + 1] arcsin

[
pinit(L)−1/2

])

for k iterations of our Grover operator G. This probability
can in turn be used to correctly sample a rewarded or non-
rewarded action sequence.

Given that the initial policy that generates pinit(L) is a
uniform probability distribution over the space of actions,
the agent’s movement initially equals an unweighted random
walk. Therefore, we can estimate pinit(L)with aMonteCarlo
simulation of random walks of length L .

For each combination of Gridworld configuration and
episode length L to be tested,we perform at least Nshots(L) =
214 runs and count the number of random walks which ter-
minated successfully, Nsuccess(L) (i.e., which have the target
cell in their path). To improve numerical stability, we keep
incrementing Nshots(L) in batches of 214 until Nsuccess(L)

has reached at least 16. Doing so, we can finally estimate the
initial success probability simply as the ratio of successes to
shots:

pinit(L) ≈ Nsuccess(L)

Nshots(L)
.

Due to the hybrid agent’s doubling strategy, pinit(L) only
needs to be pre-computed for powers of 2 and until con-
vergence of pinit(L). For the plot in Fig. 3, however, we
also computed pinit(L) for intermediate values to create a
smoother curve using linear interpolation.

Finally, in this section, we address why omitting outer
walls at all is not feasible within this framework. As proven
in Pólya (1921), on an infinite two-dimensional grid, the ran-
dom walker’s probability to pass by any given point x ∈ Z

2

converges to 1 in the limit of infinite steps. Therefore, even
for the scenario of no walls, which is equivalent to an infinite
two-dimensional grid, pinit(L) should converge towards one
in the limit of infinite steps,

lim
L→∞ pinit(L) = 1.

The issue for our simulation is, however, the slow rate of
convergence. Even for the smallest base area size of 5 × 5,
pinit(L) has just reached approximately 60% for L = 222 =
4194304 in the “no-walls” scenario, whereas for dwall = 64,
the probability already converges near L = 219 = 1048576.
By counting just the steps of unsuccessful random walks, we
thus arrive at

L · (1 − pinit(L)) · Nshots

≈ 222 · (1 − 0.6) · 214
≈2.7 × 1010

steps computed just for this episode length, which becomes
soon fully intractable for even larger episode lengths due to
the slow increase in pinit(L).

Additionally, the run time scaling of the unrestricted clas-
sical strategy in Fig. 4 with increasing outer wall distance
shows the intractability of simulating this strategy in a “no-
walls” scenario.

Appendix C. Total interaction steps for fixed
episode length

In this section, we give some background on the performance
comparison shown in Fig. 1, which motivates the flexible
episode length selection strategy for the hybrid agent.

The example stems from an RL setting of a Gridworld
with a base area size of 7×7 and an outer wall distance of 16
(see Section 3.2 for our Gridworld layout definitions). We
choose fixed episode lengths L in the interval ranging from
Lmin = 12 up to 214 = 16834. Further, we assume untrained
agents initialized with uniform action selection probabilities
such that the classical success probability pinit(L) is the one
of a random walk of length L through the maze. For both
the classical and hybrid agent, we count the total number of
interaction steps, i.e., the total number of actions performed
until the first reward is reached.

The results presented in Fig. 1 are generated with aMonte
Carlo simulation of 100,000 repetitions each on a logarith-
mically spaced grid of 868 different episode length values.
For the classical agent, we perform a random walk that is
periodically reset after L steps until the first reward is found,
aggregating the total number of steps. For the hybrid agent,
we rely on the simulation of amplitude amplification pre-
sented in Appendix B, using the precomputed initial success
probabilities for each episode length. If the simulated ampli-
tude amplification returns a rewarded episode, we sample the
length of a rewarded action sequence by performing random
walks of at most length L until there is a rewarded one.

The “zig-zag” behavior in Fig. 1 for small episode lengths
can be explained as follows. For the chosenGridworld layout,
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the minimal episode length to reach the target is twelve. As
we increase the episode length, non-optimal paths may now
also reach the target, resulting in an increase of the success
probability. However, this increase only occurs in episode
length intervals of two as one cannot land on the target cell
with an odd number of steps. Thus, for small episode lengths,
the success probability only increases from an even number
to the next but stays constant for the next larger odd value.
Only when the episode length is large enough that the agent
may run into a wall and thus “waste” a step, the success
probability increases for every incrementally larger episode
length. This piecewise constant success probability leads to
the spikes for odd episode length values in Fig. 1. Indeed,
there are on average as many unsuccessful episodes as with
the next lower even episode length, but these episodes are
more “costly” due to the additional step.

Appendix D. Theoretical performance
investigations

In this section, we derive expressions for the expected per-
formance in terms of the total number of actions taken to
find a reward, Nact, for a given success probability function
p(L). Here, we assume that the probability to find the tar-
get converges to unity in the limit of infinitely many steps,
lim
L→∞ p(L) = 1. We focus on the comparison between the

probabilistic hybrid and the unrestricted classical strategy.

D.1 Unrestricted classical strategy

For the unrestricted classical strategy, the expected number
of actions to find a reward is

Eunres. class.[Nact]

=
∞∑
L=1

L · [
p(L) − p(L − 1)

]
(D1)

≈
∞∫
0

[
1 − p(L)

]
dL. (D2)

This follows from the idea that
[
p(L) − p(L − 1)

]
is the

probability to have success exactly after L steps, which is
indeed a valid probability distribution due to the fact that
lim
L→∞ p(L) = 1. The approximation as an integral follows

from the geometric idea that Eq.D1 describes the area which
is bounded by p(L) from below and by unity from above in
the

(
L, p(L)

)
-graph.

D.2 Probabilistic hybrid strategy

Computing the expected number of actions taken until a
reward is found for the probabilistic hybrid strategy is slightly
more involved than in the unrestricted classical case.

Let L = 2n with n ∈ N0 denote the current episode length
and i be the count of completed iterations of the main loop
of the probabilistic algorithm (Algorithm 1) with that L. The
possible events and their probabilities within one execution
of the main loop of the probabilistic hybrid algorithm are
presented schematically in Fig. 8.

Fig. 8 Schematic of the decisions within one iteration of the proba-
bilistic hybrid algorithm (Algorithm 1) after i completed iterations at
episode length L . Starting from the root node at the top, a stochastic
decision is first taken whether the episode length is doubled. If it is
not doubled, an actual sampling step is performed. If the green leaf
node is reached, a reward is found and the algorithm terminates. The
corresponding probabilities are printed in black, boldface entries in the
blue (L, i)-tuples highlight a change in either the episode length L , the
count of completed iterations i , or both

Before presenting the individual probabilities occurring in
the probabilistic hybrid algorithm, we recall the connection
between the count of completed loop iterations i and the
parameter m, which controls both the sampling interval for
the number of Grover iterations, which is [0,m), and the
probability to double the episode length, denoted ϕL(m) in
the main text. In the first iteration (i.e., i = 0) at the current
episode length, m is set to 1. At the end of each iteration
without success, it is multiplied by λ until a maximal value
of mmax = √|A|L is reached. Before m reaches mmax after

imax(L) =
⌈
L log(|A|)
2 log(λ)

⌉
(D3)

loop iterations, we can therefore identify m = λi ∀ i <

imax.
We can now rewrite the probability to double the episode

length, ϕL(m), in terms of i . For clarity and consistency
with the subsequently introduced probabilities, we denote
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this probability Probi (“L → 2L”):

Probi (“L → 2L”) = 2 log(m)

L log(|A|)

=
{

i
L · 2 log(λ)

log(|A|) , 0 ≤ i < imax,

1, i = imax.

(D4)

We denote the corresponding complementary probability to
continue with the current episode length as

Probi (“L → L”) = 1 − Probi (“L → 2L”).

Further, since the probabilistic doubling of the episode length
happens first in an iteration before any RL interaction takes
place, we can always assume in the following that i < imax

and, therefore, express m as λi .
The probability Probi,L,k(“reward”) to sample a rewarded

action sequence at the current episode length L after i com-
pleted loop iterations (and thus complete the search for the
first reward) depends on the classical success probability
p(L) and the randomly sampled number of Grover iterations
k and is given by

Probi,L,k(“reward”) = sin2 ([2k + 1]θL) (D5)

with θL = arcsin[√p(L)]. Tofind the expected success prob-
ability Probi,L(“reward”) for some L and i , we compute the
expectation value over the uniform interval [0, λi ):

Probi,L(“reward”)

=Ek∼unif{0,λi }[Probi,L,k(“reward”)]

= 1

�λi�
�λi �−1∑
k=0

sin2 ([2k + 1]θL)

=
{

1
2 − sin(4�λi �θL )

4�λi � sin(2θL )
, 0 < θL < π/2,

0, θL = 0,

(D6)

where the last equality stems from Lemma 2 in Boyer et al.
(1998). The corresponding complementary probability is

Probi,L(“no reward”) = 1 − Probi,L(“reward”).

Using these basic probabilities, we can express the prob-
ability that at episode length L , a reward is found before the

doubling of the episode length is triggered:

Prob(“rewardat length L”)

=
imax∑
i=1

Prob(“reward exactly after i iter. at L”)

=
imax∑
i=1

(
Probi−1(“L → L”) · Probi−1,L(“reward”)

·
i−2∏
j=0

[
Prob j (“L → L”) · Prob j,L(“no reward”)

])
(D7)

The term Prob(“reward exactly after i iter. at L”) defines
the probability that a reward is found exactly after i itera-
tions at the current episode length L . This probability can be
derived from passing the decision tree in Fig. 8, starting with
some L and i = 0, i − 1 times following the rightmost path,
followed by a consecutive pass towards the rewarded (green)
leaf node.

The probability terms stated above now allow the com-
putation of the probability that the probabilistic algorithm
reaches a certain combination of episode length L = 2n

and number of passed iterations i and, furthermore, actu-
ally performs a sampling step with amplitude amplification.
This probability is denoted Prob(“play at (L = 2n, i)”).
A combination of L and i may not be reached due to either
the strategy terminating at a smaller episode length or due to
doubling the episode length before or within the (i + 1)-th
iteration at the current episode length. The probability can
be decomposed as follows:

Prob(“play at (L = 2n, i)”)

=
[
n−1∏
m=0

(
1 − Prob(“reward at L = 2m”)

)]

·
⎡
⎣ i−1∏

j=0

Prob j (“2
n → 2n”)

(
1 − Prob j,2n (“reward”)

)⎤
⎦

· Probi (“2n → 2n”)
(D8)

Finally, before stating the full expected value of Nact for
the probabilistic hybrid algorithm, we must compute the
expected value of Nact for a certain combination of i and
L, named E

(i, L)[Nact]. This is again an expectation over
the number of Grover iterations k, which is uniformly sam-
pled from the interval [0, λi ). Performing k Grover iterations
contributes 2kL actions to Nact in the quantum part of the
algorithm and up to L actions in the classical verification of
the sampled sequence. Hence, the total of (2k + 1)L actions
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provides an upper bound:

E
(i,L)[Nact] ≤ 1

�λi�
�λi �−1∑
k=0

(2k + 1)L

= L

�λi�
(
2
(�λi� − 1)�λi�

2
+ �λi�

)
= L · �λi�

(D9)

Now, we can write the expected value of Nact for the
probabilistic hybrid algorithm as the sum of the expected
number of actions performed for a certain combination
of i and L , E

(i, L)[Nact], weighted by the probability
Prob(“play at (L = 2n, i)”) for all possible combinations
of L and i :

Ehybrid[Nact]

=
∞∑
n=0

( imax(2n)∑
i=0

[
E

(i,L=2n)[Nact]

· Prob(“play at (L = 2n, i)”)
])

.

(D10)
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