elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Enhancing the Prediction of Dam Deformations: A Novel Data-Driven Approach

Ziemer, Jonas und Stein, Gideon und Wicker, Carolin und Jänichen, Jannik und Klöpper, Daniel und Last, Katja und Denzler, Joachim und Schmullius, Chiristiane und Shadaydeh, Maha und Dubois, Clemence (2025) Enhancing the Prediction of Dam Deformations: A Novel Data-Driven Approach. Remote Sensing, 17 (6). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs17061026. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Kurzfassung

Deformation monitoring is a critical task for dam operators to guarantee safe operation. Given an increasing number of extreme weather events caused by climate change, the precise prediction of dam deformations has become increasingly important. Traditionally, multiple linear regression models have been employed, utilizing in situ data from pendulum systems or trigonometric measurements. These methods sometimes suffer from sparse data, which typically represent deformations only at specific points on the dam, if such data are available at all. Technical advances in multi-temporal synthetic aperture radar interferometry (MT-InSAR), particularly Persistent Scatterer Interferometry (PSI), address these limitations by enabling monitoring in high spatial and temporal resolution, capturing dam deformations with millimeter precision, and providing extensive spatial coverage. This study advances traditional methods of dam monitoring by employing data-driven techniques and integrating Sentinel-1 C-band Persistent Scatterer (PS) time series alongside in situ data. Through a comprehensive evaluation of advanced data-driven approaches, we demonstrated considerable improvements in predicting dam deformations and evaluating their drivers. The analysis provided evidence for the following insights: First, the accuracy of current modeling approaches can be greatly improved by utilizing advanced feature engineering and data-driven model selection. The prediction performance of the pendulum data was improved by utilizing data-driven algorithms, reducing the mean absolute error from 0.51 mm in the baseline model (R2 = 0.92) to as low as 0.05 mm using the full model search space (R2 = 0.99). Although the model accuracy for the PS datasets (MAEmax: 0.81 mm) was about one order of magnitude lower than that for pendulum data, the mean absolute errors could be reduced by up to 0.25 mm. Second, by incorporating freely available PS time series into deformation prediction, dams can be monitored in higher spatial resolution, making PSI a valuable tool for dam operators. This requires adequate dataset filtering to eliminate noisy PS points. Third, extended representations of water level and temperature, including interaction effects, can improve model accuracy and reduce prediction errors. With these insights, we recommend incorporating the proposed methodology into the monitoring program of gravity dams to enhance the accuracy in predicting their expected deformations.

elib-URL des Eintrags:https://elib.dlr.de/213318/
Dokumentart:Zeitschriftenbeitrag
Titel:Enhancing the Prediction of Dam Deformations: A Novel Data-Driven Approach
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ziemer, JonasUniversität JenaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Stein, Gideongideon.stein (at) uni-jena.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wicker, CarolinRuhrverbandNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jänichen, Jannikjannik.jaenichen (at) uni-jena.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Klöpper, DanielRuhrverbandNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Last, KatjaRuhrverbandNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Denzler, JoachimComputer Vision Group, Friedrich-Schiller-Universität Jena, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schmullius, Chiristianec.schmullius (at) uni-jena.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Shadaydeh, MahaFSU Jenahttps://orcid.org/0000-0001-6455-2400NICHT SPEZIFIZIERT
Dubois, Clemenceclemence.dubois (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:15 März 2025
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:17
DOI:10.3390/rs17061026
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:dam monitoring, data-driven algorithms, deformation prediction, PSI, Sentinel-1
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Impulsprojekt Resiliente Versorgungsinfrastruktur und Warenströme im Kontext küstennaher Extremwetterereignisse
Standort: Jena
Institute & Einrichtungen:Institut für Datenwissenschaften > Datenanalyse und -intelligenz
Hinterlegt von: Dubois, Clemence
Hinterlegt am:24 Mär 2025 15:02
Letzte Änderung:27 Mär 2025 09:26

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.