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Abstract: Deformation monitoring is a critical task for dam operators to guarantee safe
operation. Given an increasing number of extreme weather events caused by climate
change, the precise prediction of dam deformations has become increasingly important.
Traditionally, multiple linear regression models have been employed, utilizing in situ
data from pendulum systems or trigonometric measurements. These methods some-
times suffer from sparse data, which typically represent deformations only at specific
points on the dam, if such data are available at all. Technical advances in multi-temporal
synthetic aperture radar interferometry (MT-InSAR), particularly Persistent Scatterer In-
terferometry (PSI), address these limitations by enabling monitoring in high spatial and
temporal resolution, capturing dam deformations with millimeter precision, and providing
extensive spatial coverage. This study advances traditional methods of dam monitor-
ing by employing data-driven techniques and integrating Sentinel-1 C-band Persistent
Scatterer (PS) time series alongside in situ data. Through a comprehensive evaluation
of advanced data-driven approaches, we demonstrated considerable improvements in
predicting dam deformations and evaluating their drivers. The analysis provided evi-
dence for the following insights: First, the accuracy of current modeling approaches can be
greatly improved by utilizing advanced feature engineering and data-driven model selec-
tion. The prediction performance of the pendulum data was improved by utilizing data-
driven algorithms, reducing the mean absolute error from 0.51 mm in the baseline model
(R2 = 0.92) to as low as 0.05 mm using the full model search space (R2 = 0.99). Although the
model accuracy for the PS datasets (MAEmax: 0.81 mm) was about one order of magnitude
lower than that for pendulum data, the mean absolute errors could be reduced by up to
0.25 mm. Second, by incorporating freely available PS time series into deformation predic-
tion, dams can be monitored in higher spatial resolution, making PSI a valuable tool for
dam operators. This requires adequate dataset filtering to eliminate noisy PS points. Third,
extended representations of water level and temperature, including interaction effects, can
improve model accuracy and reduce prediction errors. With these insights, we recommend
incorporating the proposed methodology into the monitoring program of gravity dams to
enhance the accuracy in predicting their expected deformations.
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1. Introduction
The deformation behavior of dams is essentially dependent on exogenous factors, such

as the air temperature and water level (i.e., water pressure) of the reservoir, as well as long-
term trend components (i.e., time or the static of the structure) [1]. The monitoring program
of dams often comprises a variety of procedures to guarantee their safe operation. These
procedures, among others, are based on the expected deformation behavior of the dam and
include pendulum systems and trigonometric measurements [2]. To test the reliability of the
measurements, predictions are made regarding the expected deformation. For pendulum
data, this is usually performed on a daily or weekly basis, while trigonometric field
campaigns are only conducted a few times a year. Current methods utilize multiple linear
regression (MLR) models to predict the expected deformation of a dam based on the
aforementioned variables [1,3–5]. However, these methods may encounter challenges
in adequately predicting the deformation since they rely only on a linear combination
of temperature and water level daily means. Furthermore, deformation data collected
through pendulum systems or trigonometry represent only a specific point on the dam
or are measured infrequently due to time-consuming field campaigns, which limits their
availability in space or time [6–9].

By utilizing satellite-based methods such as Persistent Scatterer Interferometry (PSI),
dam deformations can be monitored with millimeter precision in extensive spatial and
temporal coverage. Freely available multi-temporal synthetic aperture radar interferometry
(MT-InSAR) data provided by ESA’s Copernicus Sentinel-1 (S-1) mission constitute a
considerable advancement. The implementation of S-1 PS time series into nationwide
ground motion services, such as the German Ground Motion Service (Bodenbewegungsdienst
Deutschland, BBD), opens up new possibilities for deformation monitoring on a large scale.

1.1. MT-InSAR Employed for Dam Monitoring in Scientific Studies

Recent studies have investigated the potential of MT-InSAR for dam monitoring.
Table 1 presents an overview of selected works analyzing ongoing deformations on em-
bankment dams [7,8,10–15], gravity dams [16–21], arch-gravity dams [6], and tailings
dams [9,22]. Milillo et al. [6] combined multiple X-band acquisitions from different sensors
to examine the spatial and temporal deformation characteristics of an arch-gravity dam
in Italy. Marchamalo-Sacristán et al. [15] investigated the integration of MT-InSAR with
other monitoring techniques in a monitoring system for embankment dams in Spain. These
studies focused primarily on long-term time series to assess past deformations influenced
by seasonal variations in water levels and temperature [5]. However, in the context of
potential extreme weather events, predicting future deformations is far more critical for
dam operators than analyzing past deformation patterns, as it allows the forecasting of
structural trends and anomalies, thereby supporting decision-making.

To date, only a few studies have concentrated on predicting dam deformations [9,22],
underscoring the need for further research in this field. This study aims to address this
research gap by introducing a novel approach that integrates freely available, analysis-
ready PS time series as a complementary data source to in situ pendulum measurements
for predictive dam deformation analysis.
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Table 1. Selection of recent studies on dam monitoring using MT-InSAR.

Dam Type Study Research Focus

Embankment Dam Milillo et al. 2017 [10] Deformation Monitoring, Dam Modeling

Embankment Dam Corsetti et al. 2018 [7] Deformation Monitoring, Dam Modeling

Embankment Dam Abo et al. 2021 [13] Deformation Monitoring

Embankment Dam Bayik et al. 2021 [8] Deformation Monitoring

Embankment Dam Marchamalo-Sacristán et al. 2023 [14] Deformation Monitoring, Dam Modeling

Embankment Dam Marchamalo-Sacristán et al. 2024 [15] Deformation Monitoring, API

Arch-Gravity Dam Milillo et al. 2016 [6] Deformation Monitoring, Dam Modeling

Gravity Dam Jänichen et al. 2022 [19] Deformation Monitoring

Gravity Dam Dubois et al. 2024 [20] Deformation Monitoring

Gravity Dam Stein et al. 2024 [21] Deformation Prediction

Tailings Dam Grebby et al. 2021 [9] Deformation Monitoring, Failure Prediction

Tailings Dam Rana et al. 2024 [22] Deformation Monitoring, Failure Prediction

1.2. Research Approach

This study introduces a fully data-driven prediction of dam deformations, which also
evaluates nonlinear model classes to improve traditional methods. The main objective
is to minimize the total prediction error by investigating two key aspects: First, while
current models rely on multiple linear regression, this study tests an alternative data-driven
approach that could allow for more accurate predictions and identification of the drivers
of deformation. Second, incorporating PS time series into the novel monitoring approach
is intended to increase the number of deformation measurements, enabling deformation
monitoring across multiple sections of the dam, which is particularly beneficial for dams
where pendulum systems are not installed.

2. Study Site and Data
2.1. Study Site

This study was conducted on the Möhne Dam located in the east of North Rhine-
Westphalia, western Germany. The dam impounds the Möhne reservoir, which has a total
capacity of 134.5 million m3 [23]. The Möhne Dam is a 40 m high arched gravity dam with
a crest length of 650 m. The center of its downstream side is oriented towards northwest
(320◦). Its characteristics are summarized in Figure 1. Built between 1908 and 1912, the
Möhne Dam primarily serves as a water supply for the Ruhr area. Additionally, it plays a
vital role in energy generation and provides crucial contributions to flood protection and
low-water elevation [23]. The dam is operated by the Ruhrverband, a non-profit-oriented
water management company. It is equipped with several measuring instruments, such
as water level and temperature monitors, trigonometric measurements, and a pendulum
system. The pendulum system is located in the center of the dam (see Figure 1A,B).
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Figure 1. Characteristics of the Möhne Dam. (A) Dam wall with its location in western Germany on a
digital orthophoto [24], EPSG: 25832. (B) The dam’s downstream side as seen from the compensatory
pond. The location of the pendulum system is marked with an orange dot. (C) Cross section of the
gravity dam [25].

2.2. Data
2.2.1. In Situ Data

In this study, Sentinel-1 PS time series were utilized for the analysis in addition to
in situ data. The timeline of this study spanned from April 2015 to December 2020, with the
last 12 months of the time series used as validation data for the prediction. A list of all
available in situ data is shown in Table 2. All variables were provided by the Ruhrverband
as daily means.

Table 2. In situ data used for the analysis, with their corresponding measuring intervals [25].

Data Temporal Resolution

Pendulum Data (mm) daily
Water Level (m) daily

Temperature (◦C) daily
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2.2.2. BBD Data

In situ data were complemented by Sentinel-1 PS time series provided by the BBD,
which is operated by the Federal Institute for Geosciences and Natural Resources (BGR).
The BBD platform was developed as a WebGIS and provides freely available nationwide
deformation information acquired by the Copernicus Sentinel-1 satellites, utilizing the PSI
technique [26]. The nationwide PS dataset for Germany is updated on a yearly basis [27].
A dataset spanning from April 2015 to December 2020 was used in the descending line-of-
sight direction (LOS) due to its favorable alignment with the dam crest (i.e., S-1 look angle:
276◦; radial alignment of the center of the dam crest: 320◦) [28]. The time series comprised a
total of 287 S-1 interferometric wide-swath (IW) scenes, acquired with a temporal resolution
of 12 days. Table 3 summarizes the key characteristics of the dataset. Figure 2 presents the
spatio-temporal baseline, with the reference scene indicated by a red dot. The perpendicular
baseline for all interferograms in the dataset ranged between −139 m and +167 m, which
is well below the critical perpendicular baseline requirement for the C-band [29]. In total,
the dataset contained eight PS points associated with the dam, whose locations are shown
in Figure 3. Their signal-to-noise ratio (SNR), as provided by BGR, is specified in Table A1.

Table 3. Characteristics of the S-1 IW dataset used in this study [30].

DESC #066

Start Date 8 April 2015
End Date 31 December 2020

Reference Scene 19 September 2018
No. of Scenes 287

Temporal Resolution 12 days
Incidence Angle 46◦

Look Angle 276◦

Max. Perpendicular Baseline +167 m
Min. Perpendicular Baseline −139 m

Figure 2. Spatio-temporal baseline plot of the descending S-1 data stack #066 used in this study [31].
A reference scene in the middle of the dataset was selected by BGR for PS processing (i.e., 19 September
2018) [30] and is highlighted with a red dot.
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Figure 3. Distribution of PS points of the descending S-1 dataset #066 on the Möhne Dam with their
corresponding ID (blue) and the location of the pendulum system in the middle of the dam (orange).
Orthophoto: GDI-NRW [24], EPSG: 25832.

3. Methods
As previously mentioned, the standard approach to predicting the expected defor-

mation of a dam involves fitting a multiple linear regression with exogenous regressors
and trend components. However, the complex deformation behavior of a dam may not be
adequately described by such a model. To demonstrate how to enhance this conventional
method, a comparison with a more sophisticated model pipeline was conducted. To fa-
cilitate this comparison, the standard approach is first described in more detail. Second,
the evaluated data-driven approaches are introduced, encompassing advanced model
classes and additional feature engineering techniques (e.g., ensemble methods and deep
learning approaches). The results of both approaches were analyzed utilizing data acquired
from a pendulum system, with a reported accuracy of 0.05 mm [32]. Additionally, PS data
from the descending orbit were incorporated into the advanced model pipeline to increase
the spatial and temporal resolution of predictions. For monitoring the long-term changes,
it is generally advisable to employ a time series spanning several years. To predict the
expected deformations of the Möhne Dam for the year 2020 (test data), the period from
April 2015 to December 2018 was chosen as the training data to determine the regression
coefficients for all models. The year 2019 was selected as the validation period for the
trained model. The accuracy of the models was evaluated utilizing descriptive statistics
(R2, Mean Absolute Error (MAE)), which are commonly used by dam operators [1,3,25].

3.1. Baseline Model: Multiple Linear Regression Using Pendulum Data

The deformation of a gravity dam is particularly influenced by its exogenous variables
and a trend component, (i.e., a linear function of time). For the Möhne Dam, daily means of
water level and temperature have been identified by the Ruhrverband as the most dominant
factors affecting deformation and were included in the baseline model [25]. In mathematical
terms, this is represented by the following Equation (1):

Yt [mm] = βwater · watert + βtemp · tempt + βt · t + β0 (1)
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where Yt represents the deformation in millimeters, watert, tempt, and t denote the daily
means of water level (m), temperature (◦C), and time (days), respectively, with their
corresponding slope coefficients βwater, βtemp, and βt. β0 indicates the intercept of the
regression model.

3.2. Data-Driven Approach

To improve the deformation prediction, an extensive model search was conducted,
which included other model classes, preprocessing of variables, and additional regressors
in addition to the results obtained through the baseline model.

Importantly, as a model selection criterion, the time series was split into three subsets.
For model selection, we first optimized model parameters on the first split (training;
44 months). We then used this model to predict the second split (validation; 12 months,
i.e., the year 2019) to evaluate how well a specific model could extrapolate to new data.
This approach also prevented the selection of models that overfit the training data, as such
models were unlikely to extrapolate correctly. Finally, we selected the model specification
with the highest validation accuracy (MAE) as the final candidate. This model was then
retrained on both the training and validation splits and used to predict the entirety of
the third split (test), which covered the complete year of 2020. By doing so, we avoided
overfitting, as the final performance was reported on a test split that was neither involved
in model estimation nor selection.

3.2.1. Model Classes

To achieve an extensive comparison, we leveraged five additional model classes
alongside linear regression, which included well-established linear time series prediction
techniques, two ensemble methods from the machine learning literature, and novel deep
learning approaches.

Concerning time series prediction techniques, we evaluated the following general
form of VARMAX (Equation (2)):

Yt [mm] =
p

∑
i=1

ΦiYt−i +
q

∑
j=1

Θjϵt−j + AXt + µt + ϵt (2)

Here, ϵ specifies error terms, X holds all exogenous variables considered, and µt specifies
a trend. Φ, Θ, and A are parameters that are estimated (referenced as “ari” in ARIMAX). Yt−i

marks the past deformation value in millimeters i days ago. Importantly, while this is often not
relevant for pendulum measurements, previous studies have shown that interactions between
PS points are possible, depending on where they are located on the dam [21]. Therefore, we
also evaluated a vectorized form of this model, in which each vector held all PS points in
one direction (referenced as “var” in VARMAX). In both cases, implementations provided by
statsmodels [33] were utilized. Notably, in the special case where p and q are zero, the model
class converges to a simple linear regression in its non-vectorized form, as the only regressors
that remain are the influences specified in Equation (2).

Regarding the ensemble methods, we deployed random forests (rf) [34] and AdaBoost
(ada) [35]. Both strategies rely on fitting multiple weak learners (e.g., simple regression trees)
and combining them into a more robust model. Notably, due to their compositional nature,
both methods can represent nonlinear relationships between regressors and the target
variable. In both cases, the implementation provided by Pedregosa et al. [36] was used.

Finally, to cover recent trends in the machine learning literature, we deployed two
deep learning approaches, tfm and Chronos [37]. Since the time series data were limited,
fitting neural networks from scratch was deemed infeasible for now. Further information
on the functionality of foundational time series models can be found in Liang et al. [38].
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As a general idea, we aimed to evaluate model classes with various levels of com-
plexity and capabilities, as we did not want to make assumptions about what works for
the presented data distribution. While VARMAX models are inherently unable to model
nonlinear interactions between regressors and target time series, they are robust against
overfitting. On the other hand, ensemble methods might catch potential nonlinear interac-
tions and thus improve predictions, while being more likely to overfit. By also including
foundational models, which somehow exist outside of the classic bias–variance tradeoff,
we attempted to sample from the full spectrum of potential forecasting techniques.

3.2.2. Exogenous Variables

While it is expected that the air temperature and the water level of the current day
explain a considerable amount of the variance in dam deformation, additional regressors
may further improve prediction accuracy. To test this, the following potential candidates
were evaluated: First, past values of air temperature and water level, either as daily
means or weekly means, were considered. Given that the movement of dams under
normal conditions is generally slow, these additional regressors have the potential to
further improve prediction accuracy by representing the historical environmental context.
Consequently, they provide a beneficial constraint on predicting the next step, especially if
the values of an exogenous variable differ considerably between consecutive time steps.
Thus, we considered past values as additional regressors.

Second, interaction effects were evaluated to account for potential multiplicative
effects of air temperature and water level on dam movement. The following two interaction
effects were tested (Equations (3) and (4)):

watert · tempt (3)

watert − watermin
watermax − watermin

·
tempt − tempmin

tempmax − tempmin
(4)

Here, watermin, tempmin, and watermax, tempmax represent the minimum and maximum
values for water level and temperature over the entire time series. In particular, Equation (3)
represents the simplest form of interaction effect that can be defined. However, temperature,
and consequently the interaction effect, can assume negative values. To address this,
Equation (4) was also considered, where both water level and temperature are scaled
between 0 and 1, thereby eliminating this potentially disruptive yet informative sign change.

Third, we evaluated a strategy in which the regressors, as well as the target time
series, were detrended and deseasoned (annual cycle). The intuition behind this approach
is to abstract long-term patterns from the time series, allowing models to focus solely
on deviations from these long-term trends, which could be an indicator of anomalous
deformations. This step involved first fitting a linear regression with time for each variable
and removing the regressions’s prediction from the time series. Subsequently, a sinusoid
with a frequency of one year was fitted to the data and subtracted.

Finally, a set of preprocessing steps was performed independently of model specifica-
tions. First, a data split into training and testing sets was conducted to prevent information
flow from the training data into the testing data. Parameters for min–max normalization
were calculated based on the training data and then applied to both the training and testing
sets. For the training data, outlier filtering was performed by detrending and applying box-
plot filtering. Additionally, missing values in the training data were linearly interpolated.

3.2.3. Model Search

To identify the best model for describing a specific time series of dam deformation, we
evaluated a comprehensive set of potential model classes in conjunction with all possible
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combinations of additional regressors, including models that omit certain features down
to the baseline model. Additionally, AdaBoost and random forests both have multiple
hyperparameters, which we evaluated as follows: maximum depth of the decision trees
(random forest), learning rate (ada), baseline estimator (ada), and the number of base
models (ada and random forest). In total, we evaluated over 20,000 models for each time
series and selected those yielding the highest validation performance, as described in
Section 3.2. The detailed model search space is specified in Table 4. While the full model
search incurred some computational overhead that could be parallelized, individual model
estimations and inference entailed only minimal computational costs—typically within
single-digit seconds on an Intel® Core™ i7 CPU.

Table 4. Evaluated model search space to identify the most suitable model. A “-” indicates that
the corresponding variable was not utilized. “DT” represents a decision tree model, while “Lin”
denotes a simple linear regression model. All possible variable combinations were assessed. No
hyperparameter tuning was performed for the foundational models, as the target time series was
analyzed in its raw form.

Linear Arimax VARMAX Random Forest AdaBoost

TSt−n (P, Equation (2)) -, 1, 2 -, 1, 2 -, 1, 2 -, 1, 2 -, 1, 2
Wt−n -, 0, 1, 2 -, 0, 1, 2 -, 0, 1, 2 -, 0, 1, 2 -, 0, 1, 2
Tt−n -, 0, 1, 2 -, 0, 1, 2 -, 0, 1, 2 -, 0, 1, 2 -, 0, 1, 2
WM -, 7 -, 7 -, 7 -, 7 -, 7
TM -, 7 -, 7 -, 7 -, 7 -, 7
Decomposition Y, N Y, N Y, N Y, N Y, N
Interaction Effect -, (3), (4) -, (3), (4) -, (3), (4) -, (3), (4) -, (3), (4)

Estimator - - - - DT, Lin
N Estimators - - - 50, 250 50, 250
Learning Rate - - - - 1, 0.1
Max Depth - - - -, 3, 7 -
D (Equation (2)) - 0, 1 - - -
Q (Equation (2)) - 0, 1, 2 0, 1, 2 - -

4. Results
This section presents the results of this study and is divided into two parts: First,

the model output of the data-driven algorithms is presented for the pendulum data, along
with an evaluation of the obtained accuracies compared to the linear regression model.
Second, the model outputs of the data-driven approaches for the PS data are presented,
along with the identification of the drivers of deformation.

4.1. Deformation Prediction Obtained Through In Situ Data and Pendulum Measurements

As shown in Figure 4, the baseline model indicated a strong relationship between
the predicted deformation values and the pendulum data (R2 = 0.89). The MAE was
0.71 mm, with extreme values ranging from −3.30 mm (underprediction) to +1.58 mm
(overprediction). For the Möhne Dam, the fit of the linear model resulted in the following
regression coefficients, as shown in Equation (5):

Yt [mm] = 0.45 · watert − 0.24 · tempt − 0.0005 · t − 9.28 (5)

As evident from this model parametrization, daily changes in water level and tem-
perature had the strongest influence on dam deformation, manifesting as a downstream
deformation of 0.45 mm for every 1 m rise in water level. Conversely, temperature counter-
acted the effect of water level by inducing an upstream deformation of −0.24 mm for every
1 ◦C increase in temperature. This relationship is well known and extensively described
in the literature [1,3,5]. Although the trend component appeared considerably smaller at
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−0.0005 mm per day, it resulted in an annual deformation towards the upstream side of
−0.18 mm.

Figure 4. (A) Deformation of the Möhne Dam as recorded by the pendulum system (orange),
presented with seasonal fluctuations in temperature (red) and water level (blue). The gray rectangle
indicates the prediction period. (B) Deformation prediction for the year 2020 obtained through the
baseline model (gray). Orange dots represent the true data values recorded by the pendulum system.
The MAE is given in millimeters. (C) Linear correlation plot between the true pendulum deformation
and the predicted deformation values in mm. The dashed black line represents the 1:1 line.

To disentangle the effects of various potential upgrades on the baseline model’s
prediction accuracy, multiple subsets of additional regressors were evaluated. Alongside
the baseline, which only used the current air temperature and water level along with
some trend components, models that utilized all possible additional regressors except the
autoregressive information (i.e., information connected to historic values) of the target time
series are displayed in Figure 5. Subsequently, models treating the target time series as
univariate (i.e., with no exogenous regressors) are presented. Finally, the model resulting
from the full model search space is reported, where all possible regressors are evaluated.

As observed in Figure 5, the prediction performance of the baseline model could be
enhanced by utilizing data-driven algorithms, reducing the mean absolute prediction error
from 0.51 mm to as low as 0.05 mm with the full model search space. However, considerable
differences exist among the various algorithms and search spaces. The accuracy of the base-
line model (MAEbest: 0.51 mm) could be improved by incorporating additional exogenous
variables (MAEbest: 0.38 mm), as well as utilizing the full search space (MAEbest: 0.05 mm).
R2 was maximized from 0.92 in the baseline model to 0.99 when utilizing the full model
search space.
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Figure 5. Deformation prediction (in mm) for the year 2020 on the Möhne Dam obtained through
an extensive model search. Cyan dots indicate the training data, and gray dots represent the test
data provided by the pendulum system. Colored lines depict the predicted deformation of the
best-performing model per search space. The MAE is given in mm. The dashed black line represents
the 1:1 line.

4.2. Deformation Prediction Obtained Through In Situ Data and Sentinel-1 PS Time Series

Considering the Sentinel-1 PS time series, the exact model specifications, particularly
the model classes, differed for each PS point. While this is less straightforward, differences
in deformation patterns were expected since the PS points lie on different sections of the
dam (see Figure 3). Gains in prediction accuracy were generally smaller compared to
pendulum data, because the signal-to-noise ratio was much lower. As evident in Table 5,
the accuracy of all predictions could be improved compared to the baseline model. Interest-
ingly, the full search space yielded the lowest prediction errors for only two of the eight PS
points (ID #11038, #11161). It is suspected that the comparatively low resolution and low
signal-to-noise ratio of the time series might favor such phenomena as more model search
increases the probability of a model overfitting on training data. These phenomena should
be noted when deploying such search strategies in the future.

Table 6 summarizes the feature usage of the selected models for each PS point of
the descending line of sight, identifying the models’ main drivers. Importantly, the final
specifications varied for each PS point, with the air temperature of the current day (Tt)
identified as the most frequently used parameter. Furthermore, interaction effects played a
major role, suggesting that the effects of water level and temperature on dam deformation
are indeed multiplicative. Regarding decomposition, all PS points—except for the two
best predicted by a foundational model (i.e., #10905, #10961)—utilized decomposition,
highlighting its usefulness for non-foundational approaches. For foundational models, only
the raw time series was provided without further processing. Finally, additional influences
differed from model to model. Given that the PS points lie in different dam sections (see
Figure 3), this variation was considered a valid phenomenon. Therefore, selecting the
regressors for each model individually proved highly beneficial.
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Table 5. Prediction accuracy (MAE in mm) per search space for all PS points of the descending LOS
direction. Model classes are denoted in the following way: linear (lin), ARIMAX (ari), AdaBoost
(ada), time series foundational model (tfm), Chronos (chr), random forest (for), and VARMAX (var).

Search
Space

Model
Class 10905 10961 10982 11038 11161 11176 11208 11243

Baseline
lin 1.52 1.02 1.18 3.85 2.05 1.21 1.56 3.16
for 3.41 3.03 3.71 5.01 3.03 3.08 2.76 4.18
ada 3.48 3.06 3.62 4.84 2.83 3.07 2.53 3.93

Baseline +
Exogenous

lin 1.56 0.98 1.12 3.64 2.09 1.00 1.42 3.26
for 1.72 1.39 1.24 4.18 2.23 1.27 1.49 3.27
ada 1.57 1.81 1.34 4.66 2.19 1.18 1.57 3.51

Univariate

lin 1.50 0.81 1.06 3.72 2.06 1.01 1.40 3.25
ari 1.34 0.94 1.06 3.73 2.05 1.02 1.39 3.26
for 1.64 1.02 1.50 4.09 2.22 1.17 1.76 3.27
ada 1.40 0.84 0.97 3.68 2.10 1.12 1.65 3.11
tfm 1.50 0.88 1.16 4.18 2.16 1.19 1.54 3.34
chr 1.55 0.87 1.17 4.22 2.28 1.17 1.69 3.40

Full

lin 1.51 0.98 1.08 3.59 2.04 1.08 1.42 3.26
ari 1.86 1.05 1.44 3.71 2.74 1.26 1.61 4.26
var 1.56 1.09 1.13 3.64 2.11 1.06 1.42 3.37
for 1.72 0.95 1.24 4.21 2.04 1.26 1.49 3.27
ada 1.57 0.93 1.34 4.55 2.19 1.11 1.57 3.21
tfm 1.50 0.88 1.16 4.18 2.16 1.19 1.54 3.34
chr 1.55 0.87 1.17 4.22 2.28 1.17 1.69 3.40

Table 6. Feature usage of the selected and displayed models for each PS point of the descending
line of sight. Notably, no clear trends could be determined. W denotes water level, and T denotes
temperature. Time lags are specified with t-n. Mean values of specified periods (here seven days) are
specified with M. Multiplicative effects are denoted as Interaction. Furthermore, Decompose specifies
if the data were detrended and deseasoned before predictions. Notably, MAE is calculated for the
original data values by adding trend and season to the predictions.

10905 10961 10982 11038 11161 11176 11208 11243

Wt ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓

Tt ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Wt−n ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Tt−n ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

WM
7 ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

TM
7 ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓

Interaction ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗

Decompose ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Figure 6 compares the baseline model and the best-performing model from the full
search space for all PS points. Since the model search space deployed depends on the
specific needs of experts and dam operators, we refrain from making more interpretations
concerning appropriate model search spaces here. However, we state that the baseline
approach could be improved in all cases, positioning the approach as useful, regardless of
the specified model search space. Furthermore, the fact that almost no improvement was
possible for PS points #11243 and #11161 (as shown in Table 5) might indicate that not all
points are suitable for inclusion in a valid monitoring strategy. For these two points, this
could most likely be attributed to a very poor signal-to-noise ratio. They can be filtered
a priori.
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Figure 6. Comparison between the best model selected based on the full search space and the baseline
model for each PS point of the descending line of sight. Deformation is given in millimeters. Notably,
a consistent improvement in accuracy for all points except #11243 and #11161 could be achieved.

In summary, this extended model pipeline improved prediction accuracy in both
pendulum measurements and PS time series, making it highly recommended, regardless of
the monitoring strategy.

5. Discussion
The proposed approach enabled a considerable improvement in deformation predic-

tions for a gravity dam through data-driven approaches, utilizing both pendulum and PS
data. While we evaluated a wide range of time series prediction techniques, it is possible
that additional model classes could provide further improvements over the current accu-
racy. However, this study provided evidence that the introduction of large model searches
is promising, especially when autoregressive components and exogenous variables are
available for prediction.

The findings of this study indicated that the deformation behavior of the Möhne Dam
follows a seasonal cycle, characterized by movements towards both the upstream and
downstream sides, as previously reported in the literature [1,3,19]. Similar improvements
in deformation prediction accuracy are likely achievable for other gravity dams, as demon-
strated by Stein et al. [21]. Furthermore, while our methodology is expected to be applicable
to different dam types, such as embankment dams, predicting specific effects, such as the
permanent settlement of the dam body due to the consolidation of fill material [4], may
be more challenging. Consequently, the prediction accuracy for these types of dams may
be lower compared to gravity dams. Nevertheless, it is important to emphasize that the
proposed methodology was designed to identify the baseline model as the optimal choice
when no further enhancements are feasible, making its application advantageous regardless
of the dam type.

A notable observation was made where reducing the model search space resulted in
the identification of better models for six out of the eight PS points (see Table 5). Figure 7
illustrates this phenomenon for PS point #11176, demonstrating the variations in prediction
accuracy as a function of the model search space. Although several factors, including



Remote Sens. 2025, 17, 1026 14 of 19

signal-to-noise ratio, overfitting, and the interaction between sample size and search space,
may have contributed to this outcome, a detailed interpretation lies beyond the scope of
this study. It is important to emphasize, however, that the selection of PS points and model
classes for dam monitoring ultimately lies with the operators. Furthermore, PS points that
are more robustly predicted using univariate models (i.e., models that exclude exogenous
influences) should be approached with caution, as it is well established that exogenous
factors account for the majority of typical movements on a gravity dam. In such cases,
filtering these points should be considered as a preprocessing step prior to analysis.
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Figure 7. Deformation prediction (in mm) for the year 2020 on the Möhne Dam obtained through the
extensive model search for PS point #11176. Cyan dots represent the training data, and gray dots
depict the test data of the descending line of sight. Colored lines represent the predicted deformation
of the best-performing model for each search space. The MAE is given in millimeters. The dashed
line represents the 1:1 line.

While we evaluated the potential of newly released foundational models, their current
univariate structure limits their capacity to account for the interactions among multiple
variables, thereby constraining their utility. Given that multivariate foundational models
will become a reality in the future, they should be integrated into the model search space.

For PS-based deformation prediction, we utilized analysis-ready Sentinel-1 datasets
provided by the German Ground Motion Service (BBD). While BBD data are updated only
annually, which may not fulfill the critical requirements for operational dam monitoring,
our approach remained independent of the data source used for analysis. As an alternative,
data provided by the European Ground Motion Service (EGMS), now including LOS
measurements in its recent update, can be considered. In contrast to BBD data, EGMS
performs multi-temporal interferometric processing using both persistent scatterers and
distributed scatterers (DSs) [39,40]. While the PS technique relies on single dominant
scatterers with a high-quality interferometric phase [41], the DS approach focuses on
areas of moderate coherence, where multiple neighboring pixels exhibit similar reflectivity
values, as they belong to the same object [42]. Unlike PS, distributed scatterers lack a
single dominant reflector, making the technique particularly useful in rural areas with
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lower coherence. On the one hand, combining both techniques, as implemented in EGMS,
increases the number of measurement points available for deformation monitoring. On the
other hand, filtering points with low temporal coherence or a poor signal-to-noise ratio
is crucial. Otherwise, several dozen PS points on a dam may be far less effective for
decision-making than a smaller number of high-quality points. The BBD datasets used in
this study were provided by the BGR as analysis-ready, pre-filtered PS time series based
on their temporal coherence to ensure quality standards. However, if the data quality
by either BBD or EGMS does not meet the requirements of dam operators, independent
processing of PS time series remains an option. This approach entails considerable time
and cost investments.

Filtering PS points is crucial, as decision-making is based on the reliable detection of
ongoing deformations on the dam. Various methods have been implemented for phase
denoising, including traditional local filters, transformed-domain filters, and nonlocal
filters [43]. Additionally, outliers in the PS time series can be filtered, as they may disturb
model estimation. In our experiments, we applied boxplot filtering to the time series,
removing values that fall outside the 2.25 interquartile range of the dataset’s distribution.
As a result, in the case of PS point #11176, all outliers with deviations exceeding 5 mm
were removed. We retained these filtered values in the visualizations of the time series to
illustrate their frequency of occurrence (see Figure 7). Importantly, more advanced filtering
techniques that account for seasonal anomalies could be implemented in future research.
Ultimately, the preselection of PS points should be considered for effective decision-making.
In this study, three of the eight PS points exhibited an SNR below 5.0 (ID #11038, #11161,
#11243), making the interpretation of ongoing deformations on the dam more challenging.

Finally, it should be noted that the PS data and pendulum measurements were treated
separately in this work. These monitoring strategies measure different movement direc-
tions (i.e., LOS and radial deformations) and exhibited vastly different signal-to-noise
ratios. By utilizing data-driven approaches, the accuracy of predictions obtained through
pendulum data could be considerably enhanced. For PS data predictions, these novel
approaches also proved valuable, even if performance gain in comparison to established
approaches depends on the specific PS point (see Table 5). It is important to note that the
aim of this study was not to achieve the same model accuracies with PS data as with pendu-
lum data. Unsurprisingly, the model accuracy for pendulum measurements was about an
order of magnitude higher (MAEmax: 0.05 mm) than that for PS data (MAEmax: 0.81 mm).
Normalization allows comparing LOS deformations with those of the pendulum system [4].
This requires the absence of significant vertical deformations and an optimal alignment
of the dam with the sensor’s look direction [28]. In this study, we used a dataset in the
descending direction; however, the approach can also be applied to datasets from the
ascending direction. It is important to emphasize that our methodology provided increased
model accuracy regardless of the data used for prediction.

Although PS-based techniques are still novel and not yet integrated into operational
services, they can be highly beneficial for dam monitoring. This is not only due to their
higher spatial density, which allows for more comprehensive monitoring of all dam sections,
but also because of their feasible temporal resolution, which enables monitoring every
12 days. Recent studies have shown that utilizing PS data for deformation monitoring can
be highly beneficial for dam operators [6,15]. This is particularly the case on dams where
no pendulum data are available. Therefore, we recommend incorporating the proposed
methodology into the monitoring program of gravity dams, utilizing freely available PS
datasets as a complement to in situ measurements.
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6. Conclusions
This study investigated the potential of utilizing advanced data-driven techniques and

additional feature engineering to improve the prediction of dam deformations, as repre-
sented through pendulum measurements or PS datasets. By conducting an extensive model
search, we provide evidence for the following insights: First, we found that additional
feature engineering can considerably enhance model accuracy, although the improvement
is substantially greater for pendulum data, reducing the mean absolute error from 0.51 mm
in the baseline model (R2 = 0.92) to as low as 0.05 mm using the full model search space
(R2 = 0.99). Second, integrating freely available PS datasets with spatially and temporally
confined in situ measurements could considerably enhance dam monitoring, establishing
MT-InSAR as a valuable tool for dam operators—particularly on dams where no pendulum
systems are installed. Although the model accuracy for PS datasets (MAEmax: 0.81 mm)
was approximately one order of magnitude lower than that for pendulum data, the mean
absolute prediction error could be reduced by up to 0.25 mm using the proposed approach.
For implementation into operational monitoring programs, adequate dataset filtering is
essential to eliminate noisy PS points. Third, incorporating extended representations of
water level and temperature, including the interaction effects between both of them, could
further improve model accuracy and reduce prediction errors. With these insights, we
recommend incorporating the proposed approach into the monitoring program of gravity
dams to accurately predict expected deformations.

Regarding future work, incorporating additional exogenous variables, such as frost
and groundwater levels, is expected to further increase accuracy. Additionally, expanding
the analysis of gravity dam deformations to consider actual physical mechanisms, rather
than merely correlational patterns, may be of great interest. This also applies to other dam
types, such as embankment dams.
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Appendix A

Table A1. Signal-to-noise ratio for the PS points of the descending data stack #066 used in this study.
SNR values less than 5.0 are not specified by BGR and marked as N/A [30].

Point-ID SNR

10905 5.8
10961 10.6
10982 5.2
11038 N/A
11161 N/A
11176 16.2
11208 5.9
11243 N/A
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