Steinegger, Joel und Räth, Christoph (2025) Predicting three-dimensional chaotic systems with four qubit quantum systems. Scientific Reports, 15 (1). Nature Publishing Group. doi: 10.1038/s41598-025-87768-0. ISSN 2045-2322.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://dx.doi.org/10.1038/s41598-025-87768-0
Kurzfassung
Reservoir computing (RC) is among the most promising approaches for AI-based prediction models of complex systems. It combines superior prediction performance with very low CPU-needs for training. Recent results demonstrated that quantum systems are also well-suited as reservoirs in RC. Due to the exponential growth of the Hilbert space dimension obtained by increasing the number of quantum elements small quantum systems are already sufficient for time series prediction. Here, we demonstrate that three-dimensional systems can already well be predicted by quantum reservoir computing with a quantum reservoir consisting of the minimal number of qubits necessary for this task, namely four. This is achieved by optimizing the encoding of the data, using spatial and temporal multiplexing and recently developed read-out-schemes that also involve higher exponents of the reservoir response. We outline, test and validate our approach using eight prototypical three-dimensional chaotic systems. Both, the short-term prediction and the reproduction of the long-term system behavior (the system’s climate) are feasible with the same setup of optimized hyperparameters. Our results may be a further step towards the realization of a dedicated small quantum computer for prediction tasks in the NISQ-era.
elib-URL des Eintrags: | https://elib.dlr.de/213252/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Predicting three-dimensional chaotic systems with four qubit quantum systems | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2025 | ||||||||||||
Erschienen in: | Scientific Reports | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Ja | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 15 | ||||||||||||
DOI: | 10.1038/s41598-025-87768-0 | ||||||||||||
Verlag: | Nature Publishing Group | ||||||||||||
ISSN: | 2045-2322 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Quantum Computing, Quantum Reservoir Computing, Machine Learning, Prediction of dynamical systems | ||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||
DLR - Schwerpunkt: | Quantencomputing-Initiative | ||||||||||||
DLR - Forschungsgebiet: | QC AW - Anwendungen | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | QC - NeMoQC | ||||||||||||
Standort: | Köln-Porz , Ulm | ||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit Institut für Materialphysik im Weltraum | ||||||||||||
Hinterlegt von: | Steinegger, Joel | ||||||||||||
Hinterlegt am: | 18 Mär 2025 08:40 | ||||||||||||
Letzte Änderung: | 24 Mär 2025 13:14 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags