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Reservoir computing (RC) is among the most promising approaches for AI-based prediction models 
of complex systems. It combines superior prediction performance with very low CPU-needs for 
training. Recent results demonstrated that quantum systems are also well-suited as reservoirs in RC. 
Due to the exponential growth of the Hilbert space dimension obtained by increasing the number 
of quantum elements small quantum systems are already sufficient for time series prediction. 
Here, we demonstrate that three-dimensional systems can already well be predicted by quantum 
reservoir computing with a quantum reservoir consisting of the minimal number of qubits necessary 
for this task, namely four. This is achieved by optimizing the encoding of the data, using spatial and 
temporal multiplexing and recently developed read-out-schemes that also involve higher exponents 
of the reservoir response. We outline, test and validate our approach using eight prototypical 
three-dimensional chaotic systems. Both, the short-term prediction and the reproduction of the 
long-term system behavior (the system’s “climate”) are feasible with the same setup of optimized 
hyperparameters. Our results may be a further step towards the realization of a dedicated small 
quantum computer for prediction tasks in the NISQ-era.

A fundamental challenge in various disciplines of science, engineering, medicine, and economics is the 
prediction of complex dynamical systems1. The ability to predict future trends and behavior from historical 
data could lead to many advancements in the aforementioned fields. Recent progress in the field of data-driven 
artificial intelligence (AI) has led to great progress in many areas, including the forecasting of complex dynamical 
systems2. In this context reservoir computing (RC)3–5 has emerged as a well-suited approach to predict short- 
and long-term properties of chaotic dynamical systems6–12 that requires only small training datasets compared 
to other recurrent neural networks (RNNs), does not suffer from the vanishing gradient problem, and has small 
computational needs. At the core of the model is a random neural network with loops called reservoir that acts 
as a memory and yields a reservoir state to a given input. After initialization is the network topology fixed and 
only the weights of a linear output layer are optimized to map the reservoir state to the right output using linear 
regression. This practice of linearly mapping the reservoir response results in a fast and computationally efficient 
training. Apart from software-based reservoirs (so-called echo state networks - ESNs) exists the idea to realize a 
RC by a physical system, leading to novel, unconventional computers going beyond the capability of classical von 
Neumann computing concepts. A class of systems that are proposed for physical RC are controllable quantum 
systems - The exponentially large Hilbert space of a quantum system is supposed to be leveraged for time series 
forecasting. This branch of RC is called Quantum Reservoir Computing (QRC)13–25. QRC is motivated by 
advancements in the field of quantum computing and is a hybrid classical-quantum machine learning model. 
Due to the efficient, simple training, this framework is a good candidate for a quantum computing method that 
can outperform classical computing on NISQ era26–28 devices.

Here, we introduce a modified version of the basic QRC framework. Our novel approach combines elements 
from QRC already discussed in the literature (temporal13,14 and spatial multiplexing15), with state-of-the-art 
practices that stabilize and boost performance in ESNs, namely non-linear readout functions29 and a proper 
data preprocessing pipeline. The resulting novel framework is benchmarked with prototypical synthetic chaotic 
systems. The focus here is two-fold. The first goal is to statistically validate the short- and long-term forecasting 
results of QRC. This important step is - to the best of our knowledge - so far missing in current research. 
Secondly, we do want to showcase that the proposed framework is capable of achieving very good prediction 
results with extremely small simulated quantum systems. This is essential for the future application on NISQ 
devices. In Sect. 2 the general task, the simulation setup and the prediction results are presented. In Sect. 3 the 
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results are discussed in the context of future applications and open questions are addressed. Finally, in Sect. 4 
the model and its hyperparameter space, the details about the simulated quantum systems and the performance 
measures are introduced.

Results
The modified version of the initially proposed QRC-algorithm13,14 investigated in this study is designed to 
forecast (continue) a d-dimensional discrete time series u(t) = {uj}L

j=1 = {u(t0), u(t0 + ∆t), · · · } from past 
time steps. Meaning, the model is supposed to approximate a function f that fulfils

 uk+1 = f({uj}k
j=1) (1)

and generalizes for unseen data. As mentioned in the introduction, RC approaches are well suited to solve such a 
task. Input data (in discrete time steps) are recurrently injected into the reservoir. The dynamics of the reservoir 
produces a high-dimensional and non-linear reservoir response that encodes information of the current state 
and the recent past of the dynamical system. The readout layer is trained to map this reservoir response (or 
readout vector) to the next step of the time series. To this end, QRC leverages the exponentially large Hilbert 
space of quantum systems (here multiple qubit systems), as an enhanced feature space. This is done in a way that 
the quantum state retains information about the present and past of the time series. The full algorithm is defined 
and explained in detail in Sect. 4.1. It follows a short description of the above described recurrent process. For 
each step k of the discrete time series, the current state of the time series is encoded into r quantum systems. 
The systems are then evolved by a unitary operator which scrambles the information. Thereafter, preselected 
expectation values are measured. This is done V times for each system before the next timstep k + 1 is encoded 
into the systems. By collecting all these observables and also including higher exponents of these observables 
as additional nodes the output vector q(k) of step k (reservoir response of step k) is obtained. These vectors are 
trained by Ridge regression to linearly map the reservoir response onto the subsequent step of the time series and 
therefore fulfilling the above defined task.

Simulation setup
In this study the prediction performance of the QRC model is investigated by forecasting eight different 
prototypical three-dimensional chaotic systems like the Lorenz-63 and the Rössler system (defined in 
Supplemental information S4) with a numerical simulation of small controllable quantum systems. To showcase 
the predictive power of the QRC model when very small qubits systems are accessible, all quantum systems are 
selected to be as small as the algorithm theoretically allows. Therefore all the results in this work are obtained 
with four qubit systems. Information regarding the simulated quantum system’s unitary evolution can be found 
in Sect. 4.3. The time series are preprocessed by standardization and subsequently scaled into the interval [a,b] 
with 0 ≤ a < b ≤ 1. This practice gives rise to two new hyperparameters: a and b. The measured expectation 
values that are selected to built the output vectors q(k) are the spin-projection ⟨σi

z⟩ and the spin-correlation 
⟨σi

zσl
z⟩ with i, l ∈ {1, . . . , 4} and i < l. The model has some free hyperparameters. The parameters that are 

part of the classical part of the algorithm are the scaling parameters a and b, the regression parameter β and the 
degree G of the used exponents of the reservoir readout. The free hyperparameters of this study concerning the 
quantum part of the algorithm are the number r of employed quantum systems and the number of employed 
evolution and measurement processes V per encoded time step k.

The results in this study are obtained for each investigated hyperparameter combination by evaluating the 
model for Nstat times. For each of these runs, different parts of the chaotic attractors and different choices of 
the random parameters for the unitary transformations describing the quantum systems are selected to enable 
statistical significant performance evaluation. Each model is trained (see Sect. 4.1) with Nsync + Ntrain = L 
consecutive steps of the trajectory and subsequently the time series is continued for Npred steps.

Prediction results
In this work, we show that the introduced and simulated QRC model is capable of achieving short-term forecasting 
quality rivaling and in some cases outperforming “classical” RC methods and also accurately predicting the 
long-term climate of three-dimensional chaotic systems while utilizing four qubit systems and small training 
datasets (Nsync = 100 and Ntrain = 2000). Our main goal is to introduce techniques that make real world 
QRC-applications on near-term available quantum computers realistic. We choose a quantum system (unitary 
evolution) that works (more details Sect. 4.3) and do not further optimize it. The selected hyperparameters 
critically influence the prediction performance in a non-trivial way (see Supplemental information S1). Covering 
the hyperparameter space with a fine grid search to find the best performing hyperparameter combination is out 
of reach due to computational limitations. Instead, a Bayesian hyperparameter optimization using the python 
package Optuna30 over a hyperparameter space section is applied. For all eight investigated chaotic systems, 
the best performing configuration of hyperparameters is obtained by maximizing the mean forecast horizon 
(defined in Sect. 4.4) of the model (Nstat=100). With these best performing hyperparameter sets we train the 
model Nstat=500 times and forecast the trajectories for Npred=20000 steps to evaluate the short- and long-term 
prediction efficiency of the model. The short-term prediction efficiency is measured by the forecast horizon, 
which determines the time for which the model prediction matches the actual continuation of the forecasted 
dynamical system up to a small deviation. The long-term prediction efficiency is determined by how well the 
model is able to recreate statistical properties of the attractor of the dynamical systems. Here we use as measures 
the largest Lyapunov exponent and correlation dimension. All the measures used to evaluate the prediction 
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quality of these best performing models are defined in detail in Sect. 4.4. The inspected hyperparameter 
section and the best performing hyperparameter set for each chaotic system can be found in the Supplemental 
information (S2).

In many applications, it is important that the machine learning model is able to forecast the time series of a 
dynamical system very accurately for as long as possible. The best performing hyperparameter configurations 
are obtained by maximizing this ability. The mean forecast horizon of the 500 trained models can be found for 
each of the chaotic systems in Table 1 and the distributions are displayed as a boxplot in Fig.1. A comparison 
of our results with those of31 shows that the mean forecast horizon is in all cases at least comparably long as in 
the classical RC approach. Yet in some cases the QRC-models even outperform (larger mean forecast horizon) 
some hybrid RC approaches. This means that these simulated QRC models which are purely data-driven are 
able to forecast chaotic systems on longer time scales more accurately than some methods making use of prior 
knowledge about the physics of the underlying equations of the chaotic systems. This is especially true when 
the reservoir size is small in conventional hybrid RC. Investigating Table 1 and Fig. 1 shows that three (Chua, 
Thomas and WINDMI) of the eight chaotic systems are predicted accurately on a much shorter timescale than 
the other ones. Interestingly enough, these systems are also comparatively badly predicted with conventional 
RC. It is certainly an obvious and important question to figure out the causes for the systematic differences in 
performance among the model systems. Yet, this research topic is beyond the scope of this paper.

In some other application scenarios, the focus might not be on the short-term behavior of the system, but 
rather on whether a dynamical system’s long-term properties (its “climate”) can be reproduced correctly. We 
investigate this by calculating two measures quantifying the (strange) attractors of the dynamical systems, 

Figure 1. Distributions of the short-term accuracy for all eight forecasted chaotic systems. These are shown in 
a boxplot of the forecast horizon in Lyapunov times for the dynamical systems. The boxes represent the 25%
-75% percentile range of the data and the line in the middle of the box shows the median of the data, i.e. 50% 
of the forecast horizons are below this value. The extended lines showcase largest and smallest observation that 
falls within a distance of 1.5 times the interquartile distance (IQR) of the data. The black dots represent the 
outliers that are outside of this range. The mean and standard deviations of the distributions can be found in 
Table 1.

 

System Mean tv Predicted mean λmax True mean λmax Predicted mean υ True mean υ

Lorenz-63 11.9 ± 1.7 0.91 ± 0.02 0.91 ± 0.02 2.053 ± 0.008 2.052 ± 0.009

Chen 13.0 ± 2.2 2.02 ± 0.05 2.02 ± 0.05 2.146 ± 0.008 2.145 ± 0.008

Chua 3.1 ± 1.4 0.31 ± 0.02 0.341 ± 0.007 1.77 ± 0.02 1.75 ± 0.01

Halvorsen 11.9 ± 2.3 0.78 ± 0.02 0.78 ± 0.02 2.106 ± 0.006 2.106 ± 0.006

Rössler 11.9 ± 2.4 0.071 ± 0.005 0.072 ± 0.004 1.82 ± 0.02 1.82 ± 0.02

Rucklidge 12.1 ± 2.0 0.194 ± 0.006 0.194 ± 0.006 1.93 ± 0.02 1.93 ± 0.02

Thomas 3.0 ± 1.5 0.03 ± 0.004 0.033 ± 0.001 1.8 ± 0.2 1.76 ± 0.04

WINDMI 5.9 ± 2.9 0.08 ± 0.04 0.074 ± 0.004 1.5 ± 0.8 1.88 ± 0.02

Table 1. Table of mean values with standard deviation as derived from 500 realizations of all three evaluation 
measures for the chosen hyperparameter configuration of all eight chaotic systems. For comparison the results 
of the largest Lyapunov exponent and the correlation dimension for true trajectories are listed as well.
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namely the correlation dimension and the largest Lyapunov exponent (both defined in Sect. 4.4). For every 
chaotic system we use 500 trajectories, all consisting of 20000 steps that were not taken for training the models, 
to calculate the mean largest Lyapunov exponent and correlation dimension of the systems from true trajectories. 
We compare the calculated statistics of the attractors with the statistics of the forecasted time series. These findings 
are presented in Fig. 2 and the mean values are listed in Table 1. The spatial and temporal statistical properties 
of the five chaotic systems that are forecasted accurately for long time scales are extremely well predicted. In our 
sample, there are no single outliers with large deviations for the Lyapuov exponent or the correlation dimension. 
Rather, all realizations are within a ≈ 5σ error range of the two measured quantities. For the remaining three 
systems, the climate of the systems is reproduced well in some cases, but some forecasted trajectories exhibit 
long-term behavior that is far from the statistical fluctuations of the true data. To the best of our knowledge, it 
is shown for the first time that QRC is capable to also reproduce the statistical long-term properties of predicted 
chaotic time series. These findings suggest that our (minimal) QRC setup does not only learn patters of the time 
series by heart leading to good short term predictions but rather correctly learns the dynamics of the underlying 
chaotic systems, enabling correct long term predictions.

Discussion and conclusions
In this work, we present a QRC architecture that is suitable for small quantum systems and performs very well 
in forecasting low-dimensional chaotic dynamical systems. The eight systems can be predicted on at least a 
few Lyapunov times very accurately. We demonstrated for the first time that the model is also able to recreate 
the long term dynamics of the chaotic systems in most cases very well. A future goal should be to decrease the 
number and optimally fully remove those realizations in the three badly performing systems that completely 
diverge. First steps for such a procedure are sketched in the Supplemental information (S3). We find indications 
that the performance of the short term predictions and the correct reproduction of the long term properties of 
the system are related to the actual choice of random variables controlling the spin-spin interactions and the 
onsite disorder in the Ising model of the quantum reservoir. We want to highlight the fact that using multiple 
quantum systems in combination with multiple evolution and measurement processes is a key to achieve 
optimal performance with small quantum systems. All best performing hyperparameter configurations use the 
maximal number of reservoirs (r = 3) of the range we selected for the Bayesian hyperparameter optimization. 
Furthermore, finding a good regression parameter is important for decreasing badly performing outliers. Our 
investigation of the hyperparameters a,b is very simplistic. Whether the performance can be increased by 
optimizing the hyperparameters over the continuous interval 0 ≤ a < b ≤ 1 is an open question. Other choices 
of how the time series is encoded might also help to achieve better forecasting ability of the models. Another 
open question is whether the performance can be further improved by increasing G or by using different readout 
functions Fres. Other methods that are used to increase prediction performance in “classical” RC like adding 

Figure 2. Distributions of the predicted climate for all eight forecasted chaotic systems. These are depicted 
by showing the Largest Lyapunov exponent vs correlation dimension for each of the 500 forecasted 
trajectories for all eight chaotic systems. The back ellipses show the three standard deviation errors of the 
correlation dimension and the largest Lyapunov exponent calculated from simulations of the actual systems. 
The zoomed-in windows plotted as insets are centered at x =< υ >true, y =< λmax >true) and extends 
±15% < λmax >true in the y-direction and ±5% < υ >true in the x-direction. The mean and standard 
deviations of the distributions can be found in Table 1.
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noise to the training data to decrease overfitting and using other regression algorithms (e.g. tree-regression32) 
should also be investigated.

In conclusion, the results of our research in combination with more suitable unitary evolution for NISQ-
devices could put hardware realizations and real-world applications of QRC not far out of reach. Future work 
should further investigate the employed unitary operator and look further into what defines a good performing 
quantum reservoir while ideally keeping NISQ-device restrictions (e.g. noise) in the hyperparameter and unitary 
operator selection in mind.

Methods
QRC framework
The input data is sequentially encoded for each step of the time series into the quantum system. For an N qubit 
system, this sequential input is realized by successively initializing the quantum state for each step of the time 
series into the state

 ρk = ρu1
k

⊗ ... ⊗ ρud
k

⊗ Tr1,··· ,d(ρ(k − 1))) (2)

where ρui
k

=
∣∣ui

k

〉〈
ui

k

∣∣ and 
∣∣ui

k

〉
=

√
1 − ui

k |0⟩ +
√

ui
k |1⟩ . Here and in the following, the i-th coefficient 

of the k-th step of the discrete time series u(t) is denoted as ui
k  and Tr1,...,d(.) is the partial trace over the first 

d qubits. This encoding choice has two obvious consequences. The first one is that to retain information about 
past inputs, the number of qubits has to be larger than the dimension of the time series. The second one is that 
the time series has to be scaled to the interval [0,1]. Following the encoding of one time step the system evolves 
under unitary evolution. The full map between two quantum states of the sequence is

 ρ(k) = UρkU†. (3)

Following the unitary evolution, expectation values are used to extract the high dimensional encoded information 
of the present and recent history of the time series. For each step of the time series, these expectation values 
(output nodes) are collected in the reservoir output vector n(k) of step k. The dimensionality of this vector is 
determined by the choice of observables and the number of qubits of the quantum system. One of the primary 
aims of this paper is to showcase the capacity QRC has even when only very small quantum systems are available. 
To increase the number of output nodes without increasing the number of qubits there are three methods 
employed.

Temporal multiplexing13,14 Rather than employing the unitary evolution and the measurement one time before 
encoding the next step of the time series, the evolution and measurement process is carried out V times. The 
output vectors for each of these single measurement phases are merged together into one output vector

 

v(k) =




n1(k)
...

nV (k)


 (4)

of step k.

Spatial multiplexing15 Rather than employing just one quantum system, multiple reservoirs are used, and the 
output vector of each of these reservoirs are concatenated together into one output vector of step k

 

p(k) =




v1(k)
...

vr(k)


 . (5)

Reservoir readout function The final technique to increase the dimension of the output vector is to apply a 
function Fres. In this work, powers of the reservoir readout up to the fourth order are considered as the readout 
function. The studied choices are thus only the reservoir response (and a bias term)

 
q(k) = Fres(p(k)) =

( 1
p(k)

)
, (6)

the reservoir response and its square (also known as “Lu readout”6)

 
q(k) = Fres(p(k)) =

(
1

p(k)
p2(k)

)
, (7)

the reservoir response and its second and third power
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q(k) = Fres(p(k)) =




1
p(k)
p2(k)
p3(k)


 , (8)

and the reservoir response and its powers up to four

 

q(k) = Fres(p(k)) =




1
p(k)
p2(k)
p3(k)
p4(k)


 . (9)

This selection of readout functions adds the hyperparameter G indicating the powers of the readout being 
included in the model. This method is inspired by new findings in “classical” RC, where it was shown that 
shifting the nonlinearities to the readout layer yields good prediction results even for minimal reservoirs29.

Hereafter, it is explained how these output vectors are exploited for time series forecasting.
Training The quantum systems are initialized in the quantum state

 ρ(0) = (|0⟩ ⟨0|)⊗N . (10)

For a given training data set {uj}L
j=1 the first Nsync steps are used to synchronize the quantum systems 

with the dynamics of the input data and thereby eliminate any transient dynamics that are a product of 
the initialization of the quantum states. The synchronization is accomplished by injecting the time series 
sequentially into the quantum reservoirs and letting the quantum states evolve as previously defined. The 
leftover Ntrain steps of the training data set are used to obtain a readout matrix Wout such that the quantum 
reservoir output vector q(k) is mapped to step k + 1 of time series uk+1. To do this, the system is sequentially 
injected with the remaining training data. The full output vectors q(k) are measured and collected in a 
matrix Q = [q(Nsync + 1), . . . , q(Nsync + Ntrain − 1)] and the desired outputs are collected in a matrix 
Y = [uNsync+2, . . . , uNsync+Ntrain ]. The objective is to find a matrix Wout that solves the equation

 Y = WoutQ. (11)

Ridge regression (detailed in Sect. 4.2) is used to obtain Wout.

Prediction: Once the matrix Wout is obtained, arbitrary long predictions continuing the time series can be 
calculated. To continue the time series, an autonomously evolving closed-loop is employed. This is achieved by 
using the last prediction of the model

 ok+1 = Woutq(k) with k > L − 1. (12)

as the next input. The optimized readout matrix is kept fixed throughout the whole forecasting process. 
The prediction phase is schematically illustrated in Fig. 3. The continued time series is denoted as 
ypred(t) = {ok}L+Npred

k=L+1  in the following.

Figure 3. Schematic illustration of the prediction phase of the QRC model.
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Ridge regression
Ridge regression is used to obtain the readout matrix Wout by calculating

 Wout = YQT(QQT − β�)−1 (13)

which minimizes the error function

 

∑
Nsync<k<Ntrain

∥Woutq(k) − uk∥2 + βTr(WT
outWout). (14)

β is an important hyperparameter that improves the prediction by penalizing large matrix coefficients.

Simulation details: unitary operator
In this work, a spin network described by the transverse field Ising model plus onsite disorder

 
H =

N∑
i>j=1

Jijσi
xσj

x + 1
2

N∑
i=1

(h + Di)σi
z (15)

is chosen as the reservoir in alignment with previous QRC research16. In the equation above, N expresses the 
number of qubits and h is the magnetic field. The spin-spin couplings Jij  are randomly selected from a uniform 
distribution in the interval [−J/2, J/2]. In the same manner, the onsite-disorders Di are randomly selected 
from the interval [−W, W ]. Finally, σi

a with a ∈ {x,y,z} denote the Pauli-matrices. The time evolution of the 
quantum system is utilized as the unitary operator. A unit time step size τ  is chosen as the time between two 
consecutive inputs, and the observable measurements are carried out V times after letting the reservoirs evolve 
for a time τ/V . The unitary operator that maps between states is

 U = e
−iHτ

V . (16)

Motivated by previous results16 the unit time step size τ = 20J  is not optimized and the quantum systems are 
chosen to be in the ergodic phase with h = 2/J  and W = 0.05/J . All parameters are expressed in units of J. 
For convenience, J=1 is selected in the simulations. We described in Sect. 4.1 the model as general as possible 
because the choice of unitary operator is not unique. The appropriate unitary operator is going to be dependent 
on constraints of the available NISQ-devices. In20 unitary operator choices are investigated that might be more 
suitable for applications in the near-term future. The model introduced in our work is applicable to other unitary 
operators and therefore gives a good starting point for further research towards employing small quantum 
system for time series forecasting.

Prediction performance measures
To evaluate the quality of the predictions, three different measures are used. These measures are chosen 
to sufficiently assess the quality of the exact short-term prediction and the reproduction of the long-term 
statistical properties (climate) of the systems. The measures used for the evaluation follow previous studies33–35 
investigating “classical” RC.

The forecast horizon (also called valid time) is calculated to evaluate the short-term prediction capabilities of 
the model. It measures the time for which the continued time series matches very closely the true continuation 
of the trajectories. The forecast horizon is the elapsed time, while the normalized, time-dependent error e(t)36 
between the continued time series ypred(t) and the true continuation y(t) = {uk}L+Npred

k=L+1  is smaller than a 
threshold value emax. The normalized, time-dependent error is defined as

 
e(t) =

∥y(t) − ypred(t)∥
⟨∥y(t)∥2⟩1/2 . (17)

Here, ⟨.⟩ denotes the average over all Npred steps and ∥.∥ is the L2-norm. It is determined for how many 
consecutive steps sv  (starting with the first forecasted state) the relation e(t) < emax holds. In this work the 
threshold is chosen to be emax=0.4. The forecast horizon tv , in units of the Lyapunov times 1/λmax of the 
dynamical system, is obtained by calculating

 tv = ∆t · sv · λmax. (18)

Here, ∆t is the time between two successive steps of the discretized time series, and λmax is the largest Lyapunov 
exponent (defined in the following paragraphs) of the system. The forecast horizon is measured in Lyapunov 
times to obtain a measure that is more comparable across different dynamical systems.
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One aspect of the long-term behavior of a dynamical system is its structural complexity. The correlation 
dimension is a measure that quantifies the structural complexity by measuring the dimensionality of the space 
populated by the trajectory37. This measure is based on the discrete version of the correlation integral

 
C(r) = lim

M→∞

1
M2

M∑
i,j=1

Θ(r − ∥xi − xj∥). (19)

Here, Θ represents the Heaviside function. C(r) calculates the mean probability that two states in phase space 
are closer than a threshold distance r for different time steps. For a self-similar strange attractor, the correlation 
dimension is defined by a power-law relationship in a certain range of the threshold r:

 C(r) ∝ rυ. (20)

The scaling exponent υ gives the correlation dimension of the attractor. The Grassberger Procasccia algorithm38 
is used to calculate the correlation dimension from data.

Another characteristic of the long-term climate of a system is its temporal complexity. The most appropriate way to 
quantify the temporal complexity of a dynamical system is to analyze its Lyapunov exponents, characterizing the 
system’s development in time. A d-dimensional dynamical system has d Lyapunov exponents that determine the 
average rate of divergence of nearby points in phase space. By measuring the average rate of exponential growth 
of a small perturbation in each direction in phase space, the Lyapunov spectrum measures how sensitive the 
system is to its initial conditions. A dynamical system exhibits chaos if one of its Lyapunov exponents is positive, 
and the magnitude of the exponent determines the timescale on which the system becomes unpredictable39,40. 
The largest Lyapunov exponent λmax is linked to the direction in which the divergence occurs most rapidly,

 d(t) = c · eλmaxt. (21)

In this research, measuring the largest Lyapunov exponent suffices, because of its dominant influence over the 
dynamics. This constraint also holds a computational advantage because λmax can be easily calculated from data 
using the Rosenstein algorithm41.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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