Panzirsch, Michael und Singh, Harsimran und Wu, Xuwei und Iskandar, Maged und Köpken, Anne und Luz, Rute und Batti, Nesrine und Lay, Florian Samuel und Manaparampil, Ajithkumar Narayanan und Mayershofer, Luisa und Luo, Xiaozhou und Burger, Robert und Bustamante Gomez, Samuel und Butterfass, Jörg und den Exter, Emiel und Friedl, Werner und Gumpert, Thomas und Pavelski, Pedro Henrique und Quere, Gabriel und Schmidt, Florian und Albu-Schäffer, Alin Olimpiu und Bauer, Adrian Simon und Leidner, Daniel und Schmaus, Peter und Hagengruber, Annette und Krueger, Thomas und Vogel, Jörn und Lii, Neal Yi-Sheng (2025) Virtual elasto-plastic robot compliance to active environments. Science Robotics, 10 (99). American Association for the Advancement of Science (AAAS). doi: 10.1126/scirobotics.adq1703. ISSN 2470-9476.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.science.org/stoken/author-tokens/ST-2460/full
Kurzfassung
Humans exhibit a particular compliant behavior in interactions with their environment. Facilitated by fast physical reasoning, humans are able to rapidly alter their compliance, enhancing robustness and safety in active environments. Transferring these capabilities to robotics is of utmost importance particularly as major space agencies begin investigating the potential of cooperative robotic teams in space. In this scenario, robots in orbit or on planetary surfaces are meant to support astronauts in exploration, maintenance, and habitat building to reduce costs and risks of space missions. A major challenge for interactive robot teams is establishing the capability to act in and interact with dynamic environments. Analogous to humans, the robot should be not only particularly compliant in case of unexpected collisions with other systems but also able to cooperatively handle objects requiring accurate pose estimation and fast trajectory planning. Here, we show that these challenges can be attenuated through an enhancement of active robot compliance introducing a virtual plastic first-order impedance component. We present how elasto-plastic compliance can be realized via energy-based detection of active environments and how evasive motions can be enabled through adaptive plastic compliance. Two space teleoperation experiments using different robotic assets confirm the potential of the method to enhance robustness in interaction with articulated objects and facilitate robot cooperation. An experiment in a health care facility presents how the same method analogously solidifies robotic interactions in human-robot shared environments by giving the robot a subordinate role.
elib-URL des Eintrags: | https://elib.dlr.de/213023/ |
---|---|
Dokumentart: | Zeitschriftenbeitrag |
Titel: | Virtual elasto-plastic robot compliance to active environments |
Autoren: | |
Datum: | 26 Februar 2025 |
Erschienen in: | Science Robotics |
Referierte Publikation: | Ja |
Open Access: | Nein |
Gold Open Access: | Nein |
In SCOPUS: | Ja |
In ISI Web of Science: | Ja |
Band: | 10 |
DOI: | 10.1126/scirobotics.adq1703 |
Verlag: | American Association for the Advancement of Science (AAAS) |
ISSN: | 2470-9476 |
Status: | veröffentlicht |
Stichwörter: | compliance control, human-robot interaction, teleoperation |
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr |
HGF - Programm: | Raumfahrt |
HGF - Programmthema: | Robotik |
DLR - Schwerpunkt: | Raumfahrt |
DLR - Forschungsgebiet: | R RO - Robotik |
DLR - Teilgebiet (Projekt, Vorhaben): | R - Telerobotik |
Standort: | Oberpfaffenhofen |
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) Institut für Robotik und Mechatronik (ab 2013) > Analyse und Regelung komplexer Robotersysteme |
Hinterlegt von: | Panzirsch, Michael |
Hinterlegt am: | 28 Feb 2025 10:41 |
Letzte Änderung: | 03 Mär 2025 10:09 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags