Ait Ali Braham, Nassim (2024) Foundation Models in Remote Sensing: Insights from Multispectral and Hyperspectral Self-Supervised Learning. [sonstige Veröffentlichung]
![]() |
PDF
3MB |
Kurzfassung
Self-supervised learning (SSL) has triggered a paradigm shift in computer vision and remote sensing, enabling the development of foundation models that generalize across diverse downstream tasks with minimal or no fine-tuning. This talk will be structured in three parts. The first part provides a concise overview of SSL in remote sensing and its applications. The second part discusses a use case of SSL-pretrained models for forest monitoring, focusing on practical aspects for semantic segmentation problems: foundation models vs. specialized models, inference cost, and the importance of qualitative evaluation of model outputs. The final part introduces SpectralEarth, a large-scale dataset designed for pretraining hyperspectral foundation model, and its potential in advancing hyperspectral and multi-sensor SSL.
elib-URL des Eintrags: | https://elib.dlr.de/212882/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | sonstige Veröffentlichung | ||||||||
Zusätzliche Informationen: | Presentation at IBM Thomas J. Watson, Yorktown Heights/USA | ||||||||
Titel: | Foundation Models in Remote Sensing: Insights from Multispectral and Hyperspectral Self-Supervised Learning | ||||||||
Autoren: |
| ||||||||
Datum: | November 2024 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Ja | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Self-supervised learning, foundation models, multispectral, hyperspectral | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||
Hinterlegt am: | 21 Feb 2025 12:19 | ||||||||
Letzte Änderung: | 21 Feb 2025 12:19 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags