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INTRODUCTION TO SELF-

SUPERVISED LEARNING



Motivation: Why SSL?

DLR
» Deep Learning requires annotated data P8
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160,00 B EnMAP
120,00 = Sentinel Sp
= Labeled data is rare o ® Sentine! 3
. 100,00
= Costly to obtain 200 ® Sentinel 2
» Tedious annotation process 60,00 ® Sentinel 1
20,00 ¥ TanDEM-X
20,00 W TerraSAR-X
. 0,00
= Unlabeled data is abundant ¥ METOP GOME-2

» Satellite archives with Petabytes of data

How to exploit unlabeled data for deep —

. . : : Self-Supervised Learnin
learning with RS image analysis? P J




What 1s SSL?

= Goal

» Obtain training feedback from the data
itself

» Learn representations in a self-
supervised fashion

= N0 human annotation

= Why?
= A pre-trained model can be transferred to
downstream tasks

» Improve accuracy and label efficiency

Self-supervision

Labeled data {x/, y’}l

—r ===y

Downstream
task

Overview of Self Supervised Learning



Foundation Models #
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= [Foundation models, latest
buzzword in the Al sphere

Pretrained
Models

= Foundation models = Big
Architecture + SSL algorithm + a
lot of data

= SSL algorithms
= Contrastive methods
» Masked Image Modeling

Foundation
Models

Jia-Bin Huang auf X: ,Making pretrained models cool again! https://t.co/puJA3zUJzG* /| X



https://x.com/jbhuang0604/status/1430186357234839563

Maximize

Contrastive Learning Similarity

= General idea Embeddings

= Sjlamese architecture with shared
parameters

= Similar images (views) are generated
using data augmentation

Shared
= Enforce invariance to the ) weights "
augmentations
- Problem: a constant function is invariant
(collapse)
Views

- Mitigating collapse
= Negative sampling: MoCo, SImCLR
= Clustering: SWAV

. | Augmentati |
= Knowledge distillation: BYOL, _
SimSiam, DINO 2
= Redundancy reduction: BarlowTwins, L. A
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Masked Image Modeling

%

= General idea

» Predict missing patches from visible
ones

» Typically high masking ratio (~75%)

encoder —> decoder

PuE™

= Prediction targets target

= Raw pixels: MAE

= Hand-crafted features: MaskFeat
= Visual tokens: BEIT

= Latent representations: data2vec

_ ,_.
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A Schematic overview of Masked Autoencoders*

» Generally used with Transformer

backbones *He, Kaiming, et al. "Masked autoencoders are scalable vision learners."
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022.




Contrastive vs Masked Image Modeling ‘#7
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= Contrastive Learning » Masked Image Modeling

+ Highly semantic features, great for + Conceptually simple, no positive/negative

classification tasks pairs

. . + Masking generally reduces pre-trainin
+ Architecture agnostic 99 y P J

time
+ Competitive results on ImageNet N
+ Competitive results on ImageNet

+ Can require a large batch siz .
d J 512€ — Requires Transformer backbone

. . . . o
Requires having good augmentations — Lower-level features => requires fine-

+ Special care for negative tuning, poor linear performance

samples/collapse

Ongoing efforts to combine the benefits of both approaches




SSL in RS ‘#7
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A lot of research happening in the field

= > 100 foundation model papers in the past few years
= Predominantly for multispectral and high resolution RGB imagery
= Little work in the hyperspectral domain

= A trend towards multi-sensor foundation models




SSL ON SENTINEL 2 DATA: A

FOREST-MONITORING USE-CASE



Evoland 4#7
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= Goals
» |mprove/extend existing Copernicus Land Monitoring Service products
» |everage ML for land surface continuous monitoring
= Application to agriculture, forest, water, urban and general land-cover

12

Evoland

LAND MONITORING EVOLUTION




Evoland: Forest Use Case
DLR

= Goal: Increase temporal frequency for
forest monitoring

= |nput: Single Sentinel 2 timestamp

= Qutput: Binary tree masks, tree density,
forest disturbance

From Dominant Leaf Type 2018 — Copernicus Land

Monitoring Service



https://land.copernicus.eu/pan-european/high-resolution-layers/forests/dominant-leaf-type/status-maps/dominant-leaf-type-2018

SSL4EO-S12
P DLR
= ~250,000 S2-S1 patches |
" 264x264 pixels

= 1.5TB of data
= 4 timestamps per location

90
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g 85
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2 —e— linear
= 701 —+— fine-tune
§ —— supervised
65— : - .
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Percentage of labeled data
Results on BigEarthNet: Pre- Earth Observation Multiple Seasons Global Coverage Multiple Modalities

training improves performance and _ :
label effici Wang, Y., Braham, N. A. A., Xiong, Z., Liu, C., Albrecht, C. M., & Zhu, X. X. (2023). SSL4EO-S12: A large-scale
14 apel efnciency multimodal, multitemporal dataset for self-supervised learning in Earth observation [Software and Data Sets]. IEEE
Geoscience and Remote Sensing Magazine, 11(3), 98-106.




SSL4EO-EU-Forests

—~16,000 locations

— 4 seasons

— Sentinel 2 images, HLR 2018 mask

60

5]
o]

Latitude

S2 Images

HLR
Masks

DLR
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Geographical distribution of the SSL4EO-EU-
Forest dataset




Initial Results A#y
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ing consi i
Pre-training consistently Protocol Weights Accurac loU

improves the results UNet ResNet-18 Random 85.58 75.19
MoCo 88.03 78.61

DINO 88.72 79.72

» ResNet-50 does not ResNet-50 Random 85.69 74.97
improve upon ResNet-18 MoCo 88.68 79.66
DINO 88.18 78.85

DISLTOIREOAVACE N ResNet-18 Random 84.89 73.95

= Similar performance for MoCo Sl 1720
ViT and ResNet DINO 87.82 78.29
ResNet-50 Random 84.73 73.65

MoCo 88.14 78.80

= UNet never gets old _ PINO 87.59 77.92
VIT-S Random 86.35 76.03

MoCo 87.38 77.59

DINO 88.57 77.49

Fine-tuning results after 100 epochs




Qualitative assessment
ResNet-18 ViT-S DLR

Loss of fine-
grained features!

Similar scores
for ResNet-18
and VIT-S,
different visual
appearance




Improving details preservation A#y
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Remove the pooling and set stride to 1
m—) |niroduce a stride of 2 in the 15t

residual block

= Architecture: ResNet Stem layer downscales
the image by a factor of 4

)

D ————

If2

Tx7 conv, 64/2
|
IHaX pOO
¥
1%1 conv, 64

3x3 conv, 64
1x1 conv, 256

1x1 conv, 64
1x1 conv, 256
3x3 conv, 64
1x1 conv, 256

3x3 conv, 64
1x1 conv, 64

X

cfgl0] blocks

Size112 L
Size:56

* Loss function: Fine-grained features are  puly Put a higher weight on the boundary
diluted in the cross-entropy loss pixels of the mask in the loss




Improved Results Custom
S2 Image Mask ResNet-18 ResNet-18 +

DLR

Refined
outputs! Yet, no
significant
change in
mloU/accuracy




How Practical are Foundation Models? A#y
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Advantages Limitations
= Strong generalization capabilities = High inference cost
= Little to no fine-tuning needed, = High memory cost

works out of the box
= Good in many tasks, not necessarily the
= Label efficiency best in any

= Cool branding = VIT limitations for pixel-level tasks

Still requires some labels

What can we do to make SSL/foundation models more useful for real-world applications?




SPECTRALEARTH: TRAINING
HYPERSPECTRAL FOUNDATION

MODELS AT SCALE



Motivation ‘#7
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A lot of research on foundation models for

MSI: SatMAE, ScaleMAE, Prithvi, DOFA, ] A
10 pectralEa
SkySense, etc. 073
n
E 10° 5 HyperGlobal-450K]
= Less research on foundation models in HSI & . HySpechet-11k @ usiHybrid
“6 M?ST
- - .
. . . QO 107 - Hype:wew
= No suitable dataset for pre-training 'E s
hyperspectral foundation models 3 105 Pavih Comter Houston University
] K?C Bots?uana Cooke City SD.FC
105 _ Pavia Ur.liversity .
1 ] Salinas
= Contribution: SpectralEarth a globally Jrdian Pines

distributed dataset, pre-trained models and 1990 1995 2000 2005 2010 2015 2020 2025
benchmark Publication Year

https://doi.org/10.48550/arXiv.2408.08447



https://doi.org/10.48550/arXiv.2408.08447

SpectralEarth: A large-scale HSI dataset 4#7
DLR

= Based on EnNMAP imagery
= 30m resolution, 202 bands

» ~538,974 patches, 128x128
pixels.
» ~415,153 unique locations

= ~73,000 locations with > 1
timestamp

= Sampled from 11,636 tiles
» ~3.3 TB of data

= Mostly cloud free

Geographical distribution of SpectralEarth




Creating the dataset
DLR

» [nput: ~11K ENMAP tiles

= |deally, we want to maximize the # of VT g R %
patches with temporal positives i Easen® A ATR Y
A% . "‘,\; d _ . ? N
= The longer the time series, the better Ay} ’k, ° X ojoo / o i
R Y ) - /-J;J ' - ? "
" \'_' f Y . ’é c !
=> Prioritize the areas of overlaps, %A NP Y
prioritize areas with higher degrees of SWNSL IO e PP A
overlap e Y ] |

= More costly than | initially expected

= Some tiles have degree > 30
A graph representing EnNMAP tiles overlaps: nodes are tiles, two nodes are
connected iff the two tiles overlap




Patchifying the data

Algorithm 1 Temporal Views Extraction

procedure MAIN PROCEDURE DLR
tiles < EnMAPData

I:
2
= Simple pipeline, but a lot of nasty details 3 overlap_graph <— GETOVERLAPS(ziles)
4: R_tree + K > empty tree, for SpectralEarth patches
5: for tile in tiles do
6 combs +— BUILDCOMBINATIONS(tile, overlap_graph)
7 for tile_subset in combs do
8 intersection <— INTERSECTION(tile_subset)
9

patches <— PATCHIFY (intersection)

= Annoying details: NaN values, duplicate
tiles, projections...

10: UPDATE(R_tree, patches)
11: end for
12: end for
* Alot of time optimizing the script: 13: end procedure
reducing # combinations, avoiding 14: function BUILDCOMBINATIONS(tile, overlap._graph)
redundant Computation, more efficient 15: combinations < GETEDGES(tile, overlap _graph
. . 16: for subset size n in |3,4,...| do
Overlap_ C_heCklng’ r?dUC”]g I/O’ 17: get n-tuples fmm[ (n-l)-[u}ples in combinations
parallelizing the script over connected 18: iomp?tc intcrsccti]onshof all n-tuples
19: eep largest n-tuples area
Components. i 20: if nI?) vaﬁd n—tuplP:a foutfd then
21: break
22: end if
23: add n-tuples to combinations
24: end for
25: return combinations

26: end function




Samples from SpectralEarth




Downstream Tasks

» Paired ENMAP imagery with
Land Cover and Crop Type
products

= CORINE: Multi-label land
cover classification

= CDL: Crop type
segmentation

= NLCD: Land cover
segmentation

DLR

(a) Classes: Arable land, Conifer- (b) Classes: Urban fabric, Indus- (¢) Classes: Urban fabric, Arable (d) Classes: Urban fabric, Arable
ous forest. Moors, heathland, scle- trial units, Arable land, Natural land, Permanent crops, Complex land, Complex cultivation patterns,
rophyllous vegetation. grassland, sparsely vegetated areas. cultivation patterns, Inland waters. Coniferous forest.

Figure 4. Sample pseudo-RGB images of the curated EnMAP-CORINE multi-label classification benchmark.

Corn I Grapes [ Pistachios B Open Water BN Cultivated Crops
| Fallow/Idle Cropland I Almonds Grassland/Herbaceous ~ W Emergent Herbaceous Wetlands
(a) EEMAP-CDL (b) EEMAP-NLCD

SpectralEarth downstream tasks



Models 4#7
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= Network Architectures

= Simple variation of classical CNN Spectral Adapter
and Vision Transformer

architecutres . R , [ ResNet ]

. Block

= 1D convolutions to extract o
spectral features (C,W,H) (128, W.H)

* Models ranging from 22M to 1.1B
parameters

Spectral Adapter
L . patchify | Transformer
Blocks

Backbone architectures

= 3 SSL Algorithms

= > 10 pre-trained models




Results: Comparing SSL Algorithms

DLR

= DINO and MoCo perform well in frozen encoder evaluation

= Little benefit when fine-tuning
= MAE is competitive in segmentation tasks, and improves fine-tuning performance
= ConvNets are not out of the game

Evaluation protocol e EnMAP-CORINE (F1 Score) EnMAP-CDL (mloU) EnMAP-NLCD (mloU)
. Init Weights
(# of trainable params.)

Spec. RN50 Spec. ViT-S Spec. RN5S0  Spec. ViT-S  Spec. RNS0  Spec. ViT-S

Random 70.53 70.42 44.72 46.52 35.86 36.85
MoCo-V2 73.97 73.60 51.66 50.37 41.98 39.85
Frozen Encoder (0)
DINO 76.64 75.06 51.53 51.01 41.77 40.31
MAE — 72.72 — 51.37 — 41.17
Random 78.31 77.78 57.53 55.07 48.18 45.95
MoCo-V2 TR5T 78.40 58.10 55.84 48.09 45.78
Full Fine-tuning (>20M) - ' o0 ’
DINO 77.98 78.34 ST.TT 55.70 AT7.7H 45.71
MAE — T8.66 — 57.66 — 47 .82
MoCo-V2 76.27 76.12 55.36 54.37 44.66 43.40
Fine-tune Adapter (56K) DINO 78.43 77.95 55.26 53.50 44141 43.00

o
=
o)
|—L

MAE - 76.80 - - 43.92




Results: Large Vision Transformers

DLR
= MAE with large ViTs always improves the results
» Fine-tuning the Spectral Adapter sometimes outperforms training from scratch

= Modest improvements from increasing model size
= Large ViTs require very large datasets

Evaluation Protocol EnMAP-CORINE (F1 Score) EnMAP-CDL (mloU) EnMAP-NLCD (mloU)

B L H g B L H g B L H g

Training from Scratch  76.99 77.24 77.28 76.85 54.79 5450 54.83 54.74 45.96 45.62  45.53  45.58

Frozen Encoder 74.72 75.07 76.06 75.33 51.20 53.14 53.19 5277 40.52 4288 43.32 42.63
Full Fine-tuning 79.05  79.18 7980 7838 5H7.70 5819 5H58.06 5H7T.86 4810 48.37 48.28  4K8.08
Fine-tune Adapter T7.09  TT.T9 7794 TT.86  54.79 55.35 5514 5490 4397 4446  44.67 4473




Results: Efficient Training

DLR
Pre-trained models converge faster when Pre-trained models help when labels are
fine-tuned scarse
80 60
75‘ /w
o 501
5 o
& 70 3 5
o E 401 "
651 — Finetuning . . 0.651 —8— Fine-tuning —®— Fine-tuning
—— Training from Scratch 30 — F|n¢.at.un|ng ~@— Training from Scratch 0.35- —®— Training from Scratch
60— ; ; ; ; —— Training from Scratch 0.601 -8 Fine-tuning Adapter ) —®— Fine-tuning Adapter
° # E?,%chs > 100 0 25 50 75 100 25 50 75 100 25 50 75 100
# Epochs Dataset Size (%) Dataset Size (%)
Convergence speed: EnMAP-CORINE and Limited labels setting: EnMAP-CORINE and

EnMAP-CDL EnMAP-CDL




VIT Patch Size: An Important Hyperparameter ‘#7
DLR

» Tokens representing smaller patches help preserve finer spatial and spectral details

4x4

16x16

=8— Frozen Encoder =@— Frozen Encoder
45.01 =@=Fine-tuning 381 =®= Fine-tuning

Frozen encoder eval with varying patch A TR
size e -
57.51 48 .
g S
55.0] \‘ ] : \
3 52.51 3 441 ’-
Es00 E 42; o u
47.5] 40 \

il

4 8 16 4 8 16
Patch Size Patch Size

W ¥
T




Future Directions

DLR
— Explore more complex backbone architectures
— Extend the set of pre-training algorithms
— SpectralEarth-MM
— Pair SpectralEarth with other sensors (Sentinel 2, Sentinel 1, Landsat 8)
— Investigate multi-sensor pre-training => exploit complementarity of different sensors

Dataset available through EOC Geoservice
https://geoservice.dlr.de/web/datasets/enmap spectralearth



https://geoservice.dlr.de/web/datasets/enmap_spectralearth




Some Open Questions #
DLR

» What can we do to make SSL/foundation models more useful for real-world applications?
Could model distillation help?

» Specialized models vs. Foundation models, when to resort to each?

» What evaluation protocols are most relevant for evaluating foundation models? Frozen
encoder? Full fine-tuning? Partial fine-tuning?

= Are we getting the full picture from benchmark tables? E.g., models with similar mloU can
behave differently

= How far should we chase the ultimate foundation model that can process any sensor (even
unseen ones)? What is the right balance between fitting a sensor well and generalizing to as
many sensors as possible?
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Questions?

i DLR



