Karasek, Rostislav und Gentner, Christian (2025) On Using Artificial Neural Networks for Multipath Radio Channel Estimation. In: 2025 IEEE/ION Position, Location and Navigation Symposium, PLANS 2025, Seiten 1114-1124. 2025 IEEE/ION Position, Location and Navigation Symposium (PLANS), 2025-04-28 - 2025-05-01, Salt Lake City, Utah. doi: 10.1109/PLANS61210.2025.11028436. ISBN 979-833152317-6. ISSN 2153-3598.
![]() |
PDF
482kB |
Offizielle URL: https://ieeexplore.ieee.org/document/11028436
Kurzfassung
Line spectral estimation is an important technique widely used in signal processing, e.g., radio channel param- eter estimation. However, the current machine learning-based methods for line spectral estimation are incomplete, and many problems still need to be addressed. We propose an Artificial Neural Network (ANN) architecture that can directly estimate the radio channel delay parameters, including the number of delays present in the radio channel measurements. We propose a robust noise regularization technique, which successfully mitigates the problem of ANN overfitting. Finally, we propose a novel loss function significantly improving the achievable precision of the radio channel parameter estimation. We compare our results with the theoretical limit Cramer-Rao Lower Bound (CRLB) and classical approaches such as the Space-Alternating Generalized Expectation-maximization (SAGE) and Superfast Line Spectral Estimation (SLSE). Our results show that this novel loss function enables the ANN-based delay estimator to approach the CRLB for a single delay case. The proposed method still achieves a super-resolution performance for larger model orders. The ANN- based approach can be approximately 24 times faster than the SAGE algorithm and 180 times faster than the SLSE.
elib-URL des Eintrags: | https://elib.dlr.de/212478/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | On Using Artificial Neural Networks for Multipath Radio Channel Estimation | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 12 Juni 2025 | ||||||||||||
Erschienen in: | 2025 IEEE/ION Position, Location and Navigation Symposium, PLANS 2025 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/PLANS61210.2025.11028436 | ||||||||||||
Seitenbereich: | Seiten 1114-1124 | ||||||||||||
ISSN: | 2153-3598 | ||||||||||||
ISBN: | 979-833152317-6 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Artificial Neural Network, Convolutional Neural Network, Machine Learning, Noise Regularization, Line Spectral Estimation, Radio Channel Parameter Estimation. | ||||||||||||
Veranstaltungstitel: | 2025 IEEE/ION Position, Location and Navigation Symposium (PLANS) | ||||||||||||
Veranstaltungsort: | Salt Lake City, Utah | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 28 April 2025 | ||||||||||||
Veranstaltungsende: | 1 Mai 2025 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - INTAS - Intelligente Ad-Hoc Sensornetzwerke | ||||||||||||
Standort: | Braunschweig | ||||||||||||
Institute & Einrichtungen: | Institut für Flugführung > Unbemannte Luftfahrzeugsysteme Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||
Hinterlegt von: | Karasek, Rostislav | ||||||||||||
Hinterlegt am: | 03 Apr 2025 13:12 | ||||||||||||
Letzte Änderung: | 18 Jul 2025 10:09 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags